

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

0.810%

This is an amended version of report# 21-000929/D02.R00. Reason: Combine results with report 20-005908/D03.R00.

Customer: Sentia Wellness

Product identity: Peppermint Drops 250mg Lot HDTO-1062

Result

0.810

Limits

Units

%

Client/Metrc ID: .

Potency:
Analyte

Microbiology:

Less than LOQ for all analytes.

CBD

Laboratory ID: 20-005908-0003

Summary

Status

CBD-Total (%)

Analyte per 1ml	Result	Limits	Units	Status	CBD-Total per 1ml	7.66 mg/1ml
CBD per 1ml	7.66		mg/1ml		CBD-Total per 30m	
Analyte per 30ml	Result	Limits	Units	Status		
CBD per 30ml	230		mg/30ml		THC-Total (%)	<loq< th=""></loq<>
					(Reported	in milligrams per serving)
Residual Solvents:						
All analytes passing a	nd less than LOQ.					
Pesticides:						
All analytes passing a	nd less than LOQ.					
Metals:						
Less than LOQ for all a	analytes.					
Customer:	Sentia Wellness					
Product identity:	10ml Peppermir	t Drops, L	.ot# DR4PK-	-2, HDTO-106	2	
Client/Metrc ID:		. /		•		
Laboratory ID:	21-000929-0004	ļ		Sample Da	te: 01/26/	/21
			Su	ımmarv		

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

Customer: Sentia Wellness

PO Box 5665

Portland Oregon 97228

United States

Product identity: Peppermint Drops 250mg Lot HDTO-1062

Client/Metrc ID:

Sample Date:

Laboratory ID: 20-005908-0003
Relinquished by: Client *See COC*

Temp: 20.3 °C

Sample Results

Potency	Method J AOA	AC 2015 V98-6 (mod)	Batch: 2004897	Ar	nalyze: 6/11/20 4:05:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBC	< LOQ		%	0.0032	
CBC-A [†]	< LOQ		%	0.0032	
CBC-Total [†]	< LOQ		%	0.0060	
CBD	0.810		%	0.0032	
CBD-A	< LOQ		%	0.0032	
CBD-Total	0.810		%	0.0060	
CBDV [†]	< LOQ		%	0.0032	
CBDV-A [†]	< LOQ		%	0.0032	
CBDV-Total [†]	< LOQ		%	0.0060	
CBG [†]	< LOQ		%	0.0032	
CBG-A [†]	< LOQ		%	0.0032	
CBG-Total	< LOQ		%	0.0060	
CBL [†]	< LOQ		%	0.0032	
CBN	< LOQ		%	0.0032	
$\Delta 8\text{-THC}^{\dagger}$	< LOQ		%	0.0032	
Δ9-THC	< LOQ		%	0.0032	
THC-A	< LOQ		%	0.0032	
THC-Total	< LOQ		%	0.0060	
THCV [†]	< LOQ		%	0.0032	
THCV-A [†]	< LOQ		%	0.0032	
THCV-Total [†]	< LOQ		%	0.0060	
Total Cannabinoids [†]	0.810		%		

Potency per 1ml	Method J AOA	AC 2015 V98-6 (mod	d) Batch : 200489	97	Analyze: 6/11/20 4:05:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBC per 1ml	< LOQ		mg/1ml	0.0304	
CBC-A per 1ml	< LOQ		mg/1ml	0.0304	
CBC-Total per 1ml	< LOQ		mg/1ml	0.0570	
CBD per 1ml	7.66		mg/1ml	0.0304	
CBD-A per 1ml	< LOQ		mg/1ml	0.0304	
CBD-Total per 1ml	7.66		mg/1ml	0.0570	
CBDV per 1ml	< LOQ		mg/1ml	0.0304	

Page 2 of 17

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Potency per 1ml	Method J AOA	AC 2015 V98-6 (mod)	Batch: 2004897		Analyze: 6/11/20 4:05:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBDV-A per 1ml	< LOQ		mg/1ml	0.0304	
CBDV-Total per 1ml	< LOQ		mg/1ml	0.0567	
CBG per 1ml	< LOQ		mg/1ml	0.0304	
CBG-A per 1ml	< LOQ		mg/1ml	0.0304	
CBG-Total per 1ml	< LOQ		mg/1ml	0.0567	
CBL per 1ml	< LOQ		mg/1ml	0.0304	
CBN per 1ml	< LOQ		mg/1ml	0.0304	
$\Delta 8$ -THC per 1ml	< LOQ		mg/1ml	0.0304	
Δ 9-THC per 1ml	< LOQ		mg/1ml	0.0304	
THC-A per 1ml	< LOQ		mg/1ml	0.0304	
THC-Total per 1ml	< LOQ		mg/1ml	0.0570	
THCV per 1ml	< LOQ		mg/1ml	0.0304	
THCV-A per 1ml	< LOQ		mg/1ml	0.0304	
THCV-Total per 1ml	< LOQ		mg/1ml	0.0571	
Total Cannabinoids 1ml [†]	7.66		mg/1ml		

Potency per 30ml	Method J AO	AC 2015 V98-6 (mod)	Batch: 2004897		Analyze: 6/11/20 4:05:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBC per 30ml	< LOQ		mg/30ml	0.911	
CBC-A per 30ml	< LOQ		mg/30ml	0.911	
CBC-Total per 30ml	< LOQ		mg/30ml	1.71	
CBD per 30ml	230		mg/30ml	0.911	
CBD-A per 30ml	< LOQ		mg/30ml	0.911	
CBD-Total per 30ml	230		mg/30ml	1.71	
CBDV per 30ml	< LOQ		mg/30ml	0.911	
CBDV-A per 30ml	< LOQ		mg/30ml	0.911	
CBDV-Total per 30ml	< LOQ		mg/30ml	1.70	
CBG per 30ml	< LOQ		mg/30ml	0.911	
CBG-A per 30ml	< LOQ		mg/30ml	0.911	
CBG-Total per 30ml	< LOQ		mg/30ml	1.70	
CBL per 30ml	< LOQ		mg/30ml	0.911	
CBN per 30ml	< LOQ		mg/30ml	0.911	
$\Delta 8 ext{-THC per 30ml}$	< LOQ		mg/30ml	0.911	
$\Delta 9 ext{-THC per 30ml}$	< LOQ		mg/30ml	0.911	
THC-A per 30ml	< LOQ		mg/30ml	0.911	
THC-Total per 30ml	< LOQ		mg/30ml	1.71	
THCV per 30ml	< LOQ		mg/30ml	0.911	
THCV-A per 30ml	< LOQ		mg/30ml	0.911	
THCV-Total per 30ml	< LOQ		mg/30ml	1.71	
Total Cannabinoids 30ml [†]	230		mg/30ml		

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

01/26/21 16:05 Received:

Solvents	Method	EPA5021	Α			Units μg/g	Batch 20	04831	Analyz	e 06/	10/20 (08:59 AM
Analyte	Result	Limits L	oq s	Status N	lotes	Analyte		Result	Limits	LOQ	Status	Notes
1,4-Dioxane	< LOQ	380	100	pass		2-Butanol		< LOQ	5000	200	pass	
2-Ethoxyethanol	< LOQ	160	30.0	pass		2-Methylbutan	е	< LOQ		200		
2-Methylpentane	< LOQ	;	30.0			2-Propanol (IF	PA)	< LOQ	5000	200	pass	
2,2-Dimethylbutane	< LOQ	;	30.0			2,2-Dimethylpi	ropane	< LOQ		200		
2,3-Dimethylbutane	< LOQ	;	30.0			3-Methylpenta	ne	< LOQ		30.0		
Acetone	< LOQ	5000	200	pass		Acetonitrile		< LOQ	410	100	pass	
Benzene	< LOQ	2.00	1.00	pass		Butanes (sum))	< LOQ	5000	400	pass	
Cyclohexane	< LOQ	3880	200	pass		Ethanol [†]		< LOQ		200		
Ethyl acetate	< LOQ	5000	200	pass		Ethyl benzene		< LOQ		200		
Ethyl ether	< LOQ	5000	200	pass		Ethylene glyco	ol	< LOQ	620	200	pass	
Ethylene oxide	< LOQ	50.0	30.0	pass		Hexanes (sum	1)	< LOQ	290	150	pass	
Isopropyl acetate	< LOQ	5000	200	pass		Isopropylbenze	ene	< LOQ	70.0	30.0	pass	
m,p-Xylene	< LOQ		200			Methanol		< LOQ	3000	200	pass	
Methylene chloride	< LOQ	600	200	pass		Methylpropane)	< LOQ		200		
n-Butane	< LOQ		200			n-Heptane		< LOQ	5000	200	pass	
n-Hexane	< LOQ	;	30.0			n-Pentane		< LOQ		200		
o-Xylene	< LOQ		200			Pentanes (sun	n)	< LOQ	5000	600	pass	
Propane	< LOQ	5000	200	pass		Tetrahydrofura	an	< LOQ	720	100	pass	
Toluene	< LOQ	890	100	pass		Total Xylenes		< LOQ		400		
Total Xylenes and Ethyl	< LOQ	2170	600	pass								

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Pesticides	Method	AOAC	2007.01 & EN	l 15662 (mod)	Units mg/kg	Batch 20	04947	Analy	ze 06/14/20 09:14 AM
Analyte	Result	Limits	LOQ Status	Notes	Analyte		Result	Limits	LOQ Status Notes
Abamectin	< LOQ	0.50	0.250 pass		Acephate		< LOQ	0.40	0.250 pass
Acequinocyl	< LOQ	2.0	1.00 pass		Acetamiprid		< LOQ	0.20	0.100 pass
Aldicarb	< LOQ	0.40	0.200 pass		Azoxystrobin		< LOQ	0.20	0.100 pass
Bifenazate	< LOQ	0.20	0.100 pass		Bifenthrin		< LOQ	0.20	0.100 pass
Boscalid	< LOQ	0.40	0.200 pass		Carbaryl		< LOQ	0.20	0.100 pass
Carbofuran	< LOQ	0.20	0.100 pass		Chlorantranilipre	ole	< LOQ	0.20	0.100 pass
Chlorfenapyr	< LOQ	1.0	0.500 pass		Chlorpyrifos		< LOQ	0.20	0.100 pass
Clofentezine	< LOQ	0.20	0.100 pass		Cyfluthrin		< LOQ	1.0	0.500 pass
Cypermethrin	< LOQ	1.0	0.500 pass		Daminozide		< LOQ	1.0	0.500 pass
Diazinon	< LOQ	0.20	0.100 pass		Dichlorvos		< LOQ	1.0	0.500 pass
Dimethoate	< LOQ	0.20	0.100 pass		Ethoprophos		< LOQ	0.20	0.100 pass
Etofenprox	< LOQ	0.40	0.200 pass		Etoxazole		< LOQ	0.20	0.100 pass
Fenoxycarb	< LOQ	0.20	0.100 pass		Fenpyroximate		< LOQ	0.40	0.200 pass
Fipronil	< LOQ	0.40	0.200 pass		Flonicamid		< LOQ	1.0	0.400 pass
Fludioxonil	< LOQ	0.40	0.200 pass		Hexythiazox		< LOQ	1.0	0.400 pass
Imazalil	< LOQ	0.20	0.100 pass		Imidacloprid		< LOQ	0.40	0.200 pass
Kresoxim-methyl	< LOQ	0.40	0.200 pass		Malathion		< LOQ	0.20	0.100 pass
Metalaxyl	< LOQ	0.20	0.100 pass		Methiocarb		< LOQ	0.20	0.100 pass
Methomyl	< LOQ	0.40	0.200 pass		MGK-264		< LOQ	0.20	0.100 pass
Myclobutanil	< LOQ	0.20	0.100 pass		Naled		< LOQ	0.50	0.250 pass
Oxamyl	< LOQ	1.0	0.500 pass		Paclobutrazole		< LOQ	0.40	0.200 pass
Parathion-Methyl	< LOQ	0.20	0.200 pass		Permethrin		< LOQ	0.20	0.100 pass
Phosmet	< LOQ	0.20	0.100 pass		Piperonyl butox	ide	< LOQ	2.0	1.00 pass
Prallethrin	< LOQ	0.20	0.200 pass		Propiconazole		< LOQ	0.40	0.200 pass
Propoxur	< LOQ	0.20	0.100 pass		Pyrethrin I (tota	l)	< LOQ	1.0	0.500 pass
Pyridaben	< LOQ	0.20	0.100 pass		Spinosad		< LOQ	0.20	0.100 pass
Spiromesifen	< LOQ	0.20	0.100 pass		Spirotetramat		< LOQ	0.20	0.100 pass
Spiroxamine	< LOQ	0.40	0.200 pass		Tebuconazole		< LOQ	0.40	0.200 pass
Thiacloprid	< LOQ	0.20	0.100 pass		Thiamethoxam		< LOQ	0.20	0.100 pass
Trifloxystrobin	< LOQ	0.20	0.100 pass						

Metals								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Arsenic	< LOQ		mg/kg	0.0412	2004881	06/10/20	AOAC 2013.06 (mod.)	X
Cadmium	< LOQ		mg/kg	0.0412	2004881	06/10/20	AOAC 2013.06 (mod.)	X
Lead	< LOQ		mg/kg	0.0412	2004881	06/10/20	AOAC 2013.06 (mod.)	X
Mercury	< LOQ		mg/kg	0.0206	2004881	06/10/20	AOAC 2013.06 (mod.)	X

Nutrition								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Density	0.9456		g/ml	0.1000	2005037	06/16/20	DMA 35™	X

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

Customer: Sentia Wellness

PO Box 5665

Portland Oregon 97228

United States

Product identity: 10ml Peppermint Drops, Lot# DR4PK-2, HDTO-1062

Client/Metrc ID:

Sample Date: 01/26/21

Laboratory ID: 21-000929-0004

Temp: 17.4 °C

Sample Results

Microbiology												
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes				
Aerobic Plate Count	< LOQ		cfu/g	10	2100820	01/30/21	AOAC 990.12 (Petrifilm)	X,I				
E.coli	< LOQ		cfu/g	10	2100821	01/30/21	AOAC 991.14 (Petrifilm)	X,I				
Total Coliforms	< LOQ		cfu/g	10	2100821	01/30/21	AOAC 991.14 (Petrifilm)	X,I				
Mold (RAPID Petrifilm)	< LOQ		cfu/g	10	2100824	01/30/21	AOAC 2014.05 (RAPID)	X,I				
Yeast (RAPID Petrifilm)	< LOQ		cfu/g	10	2100824	01/30/21	AOAC 2014.05 (RAPID)	X,I				
Salmonella spp. by PCR	Negative		/5g		2100826	01/29/21	AOAC 2020.02	X,I				

Mycotoxins								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Aflatoxin B1 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Aflatoxin B2 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Aflatoxin G1 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Aflatoxin G2 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Deoxynivalenol [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Fumonisin B1 [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Fumonisin B2 [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	
HT2-Toxin [†]	< LOQ		μg/kg	40.0	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Nivalenol [†]	< LOQ		μg/kg	400	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Ochratoxin A [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Ochratoxin B [†]	< LOQ		μg/kg	2.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Γ2-Toxin [†]	< LOQ		μg/kg	20.0	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Zearalenone [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

† = Analyte not NELAP accredited.

Units of Measure

cfu/g = Colony forming units per gram μ g/kg = Micrograms per kilogram = parts per billion (ppb) /5g = Per 5 grams % wt = μ g/g divided by 10,000

Glossary of Qualifiers

I: Insufficient sample received to meet method requirements.

X: Not ORELAP accredited.

Approved Signatory

Derrick Tanner General Manager

Report Number:

21-000929/D02.R01

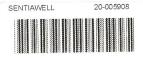
Report Date:

02/02/2021

ORELAP#:

OR100028

Purchase Order:


Received:

01/26/21 16:05

Hemp Products Chain of Custody Record

Revision: 0.00 Control#: CF002 Rev: 02/27/2020 Eff: 02/27/2020 ORELAP ID: **OR100028**

Con	npany: Sentia Wellness						An	alysis	Reque	ested				PO Number:										
Cor	ntact: Erin Harbacek et: Sandy Location								بد				Proj	ect Number: _										
	Portland State: OR Z	97230							ien L.															
	nail Results: erin.harbacek@sentiav										per client email				Report	to State - 🗆 M	IETRC or □ Ot	her:						
100													59)	nts							Tui	rn¬around time	e: 🗹 Standard	☐ Rush * ☐ Priority Rush *
	Ph: () Fx Results: () lling (if different):)		.)			ر ا	Pesticides (OR 59)	Residual Solvents	Heavy Metals	Microbiology	الم	2			Sample	d by:	*Ask for ava	allability				
Lab ID	Client Sample Identification	Dat	te	Potency	Pestic	Residu	Heavy	Micro	Density				Sample Type †	Report units (potency)	Serving size (edibles)	Comments/Metrc ID								
1	Unflavored Drops 250mg			✓	✓	✓	✓	✓	/				Т	%		Drops reporting units: %, mg/g mg/container								
	Lot: HDTO-1344															mg/container								
7	Lavender Drops 250mg			✓	√	√	✓	✓	1				Т	%		reporting units: %, mg/30mL								
	Lot: HDTO-1408																							
3	Peppermint Drops 250mg			1	1	1	1	1	1				Т	%		Micro: APC, Y&M, Ecoli/coliform Salmonella spp								
	Lot: HDTO-1062																							
4	Lemon Ginger Drops 250mg			✓	1	1	√	1	/				Т	%										
	LOT: HDTO-1063																							
	Relinquished By: Da	ate T	ime			Recei	ved by:			Da	to	Time			Lab Use (Only								
4					/	7	ved by.					,												
U	lip Sla 69	15.0	5PM	-	5)				le	1	1515	Evidence of cooling: \square yes $ \square$ No - Temp (°C): 20.3											
													Sample in good condition: ☐ yes ☐ No											
													□ Cash □ Check □ CC □ Net: Prelog storage:											

† - Sample type codes: Topicals (L); Edibles (E); Tincture (T); Bath Salts (S); Beverages (B)

Report unit options: %; mg/g; mg/serving

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms.

12423 NE Whitaker Way Portland, OR 97230 P: (503) 254-1794 | Fax: (503) 254-1452 info@columbialaboratories.com Page _____of___www.columbialaboratories.com

Report Number:

21-000929/D02.R01

Report Date:

02/02/2021

ORELAP#:

OR100028

Purchase Order:

Received:

01/26/21 16:05

Hemp Products Chain of Custody Record

Revision: 0.00 Control#: CF002 Rev: 02/27/2020 Eff: 02/27/2020

ORELAP ID: OR100028

Com	pany: Sentia Wellness					An	alysis	Requested	1			PO Number:			
Con Stree City: S En	Contact: Erin Harbacek Street: Sandy Location City: Portland State: OR Zip: 97230 Email Results: erin.harbacek@sentiawellness.com Ph: Fx Results: () Silling (if different):			Pesticides (OR 59)	Residual Solvents	Aetals	ology				Proj Pr Custor Report Tui	PO Number: Project Number: Project Name: Custom Reporting: Report to State - Turn-around time: *Ask for availability Sampled by:			
Lab	Client Sample Identification	Date	Potency	Pestici	Residu	Heavy Metals	Microbiology				Sample Type †	Report units (potency)	Serving size (edibles)	Comments/Metrc ID	
1	83mg Unflavored Drops WIP848, HDTO-1344	1/26/21					✓				Т	(potency)	(carbies)	Micro: APC, Y&M, Ecoli/coliform Salmonella spp, Mycotoxins Will need to combine all 4 WIP lot reports with their respective	
2	83mg Lavender Drops	1/26/21					√	11			Т				
3	WIP846, HDTO-1408 83mg Lemon Ginger Drops	1/26/21					√				Т			HDTO lot reports. I will clarify later on.	
4	WIP847, HDTO-1063 83mg Peppermint Drops	1/26/21					√				Т			_	
	WIP845, HDTO-1062														
	Relinquished By: D	ate Time			Receiv	ved by:		,1	Date	Time			Lab Use (Only:	
	llegete 1/3	1421 3:53				5	Ъ	1	26	16.0	Sample Cash	e of cooling: \square	yes	or □Client drop off Temp (°C): 17.4	

†- <u>Sample type codes:</u> Topicals (L); Edibles (E); Tincture (T); Bath Salts (S); Beverages (B)

Report unit options: %; mg/g; mg/serving

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms.

12423 NE Whitaker Way

P: (503) 254-1794 | Fax: (503) 254-1452

Page _____ of _____ www.columbialaboratories.com

Report Number: 21-0

21-000929/D02.R01

Report Date:

02/02/2021

ORELAP#:

OR100028

Purchase Order:

Received: 01/26/21 16:05

Hemp Products Chain of Custody Record

Revision: 0.00 Control#: CF002 Rev: 02/27/2020 Eff: 02/27/2020

ORELAP ID: OR100028

PRICING AND CHARGES

Prices to be charged for work performed for CUSTOMER are those currently published in the Columbia Laboratories (herein referred to as "the LAB". Standard pricing applies unless otherwise agreed in writing by the CUSTOMER and the LAB. CUSTOMER must notify the LAB of price quotation at the time of the transfer of sample(s) to the LAB. Any cancellation of testing requirements will result in charges being assessed on all testing completed prior to the notice of cancellation. Unless otherwise agreed upon, samples containing hazardous material will be shipped back to client at their expense, or disposed of at a certain fee, waste category dependent. New accounts are accepted with full payment in advance by cash, check, Visa or Mastercard. A credit line may be established with an approved credit application.

DELIVERY AND LIABILITY LIMITATIONS

The specific format of the goods will be defined by CUSTOMER to the LAB upon delivery of the sample(s) to the LAB. The LAB will analyze samples provided by CUSTOMER as requested by CUSTOMER in accordance with the procedures documented in the Quality Assurance Plan (QAP). Samples are retained for 30 days after receipt. If additional time is desired, then a written request is required, and an additional monthly fee will apply.

CONFIDENTIALITY

The LAB will treat all information regarding work performed for CUSTOMER as proprietary and confidential. No CUSTOMER information will be released to third persons without the written request of the CUSTOMER.

LIMITATION OF LIABILITY AND WARRANTY

The LAB gives no warranty, express or implied, or of fitness for a particular purpose, in connection with its analytical testing or reporting. Any liability of the LAB to CUSTOMER or any third party shall be limited to the cost of analysis charged to CUSTOMER.

PAST DUE ACCOUNTS

Credit line account are payable within 30 days. Accounts that are 60 days past due will incur 1½/2% per month on all past due sums until paid in full and will automatically default to cash on delivery (COD). Reports will not be released unless payment on past and current invoices are received. Customer agrees to pay the interest as a service charge and all the LAB's collection costs, including reasonable attorney fees.

EXPERT TESTIMONY AND COURT APPEARANCES

In the event CUSTOMER requires the further written opinion or testimony of any employee of the LAB, including response to a subpoena issued by CUSTOMER or any third person, CUSTOMER agrees to pay such additional fees and expenses as may be reasonably assessed by the LAB.

ALTERNATIVE DISPUTE RESOLUTION (ADR)

Any disputes arising out of this Agreement or the analytical testing or reporting by the LAB shall be settled through mediation and/or arbitration rather than litigation, and the cost of the ADR shall be borne equally by both parties.

APPLICABLE LAW

Legal matters arising from work performed by the LAB for CUSTOMER will be construed and interpreted in accordance with the laws for the state of Oregon. When sending, transferring, or submitting samples, the CUSTOMER assumes full responsibility for complying with all applicable state and federal laws

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms.

12423 NE Whitaker Way Portland, OR 97230 P: (503) 254-1794 | Fax: (503) 254-1452 info@columbialaboratories.com

Page 2 of 2 www.columbialaboratories.com

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Laboratory Quality Control Results

EPA 5021						Bat	tch ID:	200483	1			
Method Blank					Laborator	y Control S	ample)				
Analyte	Result		LOQ	Notes	Result	Spike	Units	% Rec	L	imit	is	Notes
Propane	ND	<	200		1430	1,190	μg/g	120.2	70	- 1	130	
Isobutane	ND	<	200		1870	1,520	μg/g	123.0	70	- 1	130	
Butane	ND	<	200		1910	1,520	μg/g	125.7	70	- 1	130	
2,2-Dimethylpropane	ND	<	200		2330	1,910	µg/g	122.0	70	- 1	130	
Methanol	ND	<	200		3650	3,210	µg/g	113.7	70	- 1	130	
Ethylene Oxide	ND	<	30		156	117	μg/g	133.3	70	- 1	130	Q1
2-Methylbutane	ND	<	200		3250	3,210	μg/g	101.2	70	- 1	130	
Pentane	ND	<	200		3420	3,210	μg/g	106.5	70	- 1	130	
Ethanol	ND	<	200		3620	3,210	μg/g	112.8	70	- 1	130	
Ethyl Ether	ND	<	200		3410	3,230	µg/g	105.6	70	- 1	130	
2,2-Dimethylbutane	ND	<	30		325	326	µg/g	99.7	70	- 1	130	
Acetone	ND	<	200		3530	3,200	μg/g	110.3	70	- 1	130	
2-Propanol	ND	<	200		3680	3,210	µg/g	114.6	70	- 1	130	
Acetonitrile	ND	<	100		1040	972	μg/g	107.0	70	- 1	130	
2,3-Dimethylbutane	ND	<	30		411	332	μg/g	123.8	70	- 1	130	
Dichloromethane	ND	<	200		996	972	μg/g	102.5	70	- 1	130	
2-Methylpentane	ND	<	30		288	324	μg/g	88.9	70	- 1	130	
3-Methylpentane	ND	<	30		339	326	μg/g	104.0	70	- 1	130	
Hexane	ND	<	30		350	335	μg/g	104.5	70	- 1	130	
Ethyl acetate	ND	<	200		3520	3,210	μg/g	109.7	70	- 1	130	
2-Butanol	ND	<	200		3490	3,210	μg/g	108.7	70	- 1	130	
Tetrahydrofuran	ND	<	100		1010	964	μg/g	104.8	70	- 1	130	
Cyclohexane	ND	<	200		3290	3,200	µg/g	102.8	70	- 1	130	
Benzene	ND	<	1		53.7	46.1	μg/g	116.5	70	- 1	130	
Isopropyl Acetate	ND	<	200		3460	3,200	μg/g	108.1	70	- 1	130	
Heptane	ND	<	200		3460	3,210	µg/g	107.8	70	- 1	130	
1,4-Dioxane	ND	<	100		967	976	µg/g	99.1	70	- 1	130	
2-Ethoxyethanol	ND	<	30		356	340	µg/g	104.7	70	- 1	130	
Ethylene Glycol	ND	<	200		819	972	µg/g	84.3	70	- 1	130	
Toluene	ND	<	200		1010	963	µg/g	104.9	70	- 1	130	
Ethylbenzene	ND	<	200		1910	1,920	µg/g	99.5	70	- 1	130	
m,p-Xylene	ND	<	200		1870	1,950	µg/g	95.9	70	- 1	130	
o-Xylene	ND	<	200		1970	1,940	µg/g	101.5	70	- 1	130	
Cumene	ND	<	30		335	327		102.4	70	- 1	130	

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Sample ID: 20-005727-0001 QC - Sample Duplicate

Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Isobutane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Butane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2,2-Dimethylpropane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Methanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30	μg/g	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Pentane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Ethyl Ether	ND	ND	200	μg/g	0.0	< 20	Acceptable	
2,2-Dimethylbutane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
Acetone	ND	ND	200	μg/g	0.0	< 20	Acceptable	
2-Propanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Acetonitrile	ND	ND	100	μg/g	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Dichloromethane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Methylpentane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
3-Methylpentane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Hexane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Ethyl acetate	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Butanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100	µg/g	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Benzene	ND	ND	1	μg/g	0.0	< 20	Acceptable	
Isopropyl Acetate	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Heptane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100	µg/g	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Toluene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethylbenzene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
m,p-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
o-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Cumene	ND	ND	30	µg/g	0.0	< 20	Acceptable	

ND - None Detected at or above MRL

RPD - Relative Percent Difference LOQ - Limit of Quantitation

* Screening only
Q1 Quality Control result biased high. Only non detect samples reported.

μg/g- Microgram per gram or ppm mg/Kg - Milligrams per Kilogram Aw- Water Activity unit

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

Laboratory Quality Control Results

J AOAC 2015	5 V98-6		<u> </u>	Bat			
Laboratory C	Control Sample						
Analyte	Result	Spike	Units	% Rec	Limits	Evaluation	Notes
CBDV-A	0.0103	0.01	%	103	85.0 - 115	Acceptable	
CBDV	0.0102	0.01	%	102	85.0 - 115	Acceptable	
CBD-A	0.00945	0.01	%	94.5	85.0 - 115	Acceptable	
CBG-A	0.0101	0.01	%	101	85.0 - 115	Acceptable	
CBG	0.00987	0.01	%	98.7	85.0 - 115	Acceptable	
CBD	0.00897	0.01	%	89.7	85.0 - 115	Acceptable	
THCV	0.00981	0.01	%	98.1	85.0 - 115	Acceptable	
THCVA	0.0100	0.01	%	100	85.0 - 115	Acceptable	
CBN	0.00984	0.01	%	98.4	85.0 - 115	Acceptable	
THC	0.0103	0.01	%	103	85.0 - 115	Acceptable	
D8THC	0.00991	0.01	%	99.1	85.0 - 115	Acceptable	
CBL	0.0101	0.01	%	101	85.0 - 115	Acceptable	
CBC	0.0104	0.01	%	104	85.0 - 115	Acceptable	
THCA	0.00894	0.01	%	89.4	85.0 - 115	Acceptable	
CBCA	0.00993	0.01	%	99.3	85.0 - 115	Acceptable	

Method Blank

Analyte	Result	LOQ	Units	Limits	Evaluation	Notes
CBDV-A	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBDV	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBD-A	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBG-A	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBG	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBD	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCV	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCVA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBN	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
D8THC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBL	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBCA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

% - Percent

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

01/26/21 16:05 Received:

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

Laboratory Quality Control Results

J AOAC 2015	V98-6				Bato	h ID: 2004897	,			
Sample Dupli	cate			Sample ID: 20-005209-0004-01						
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes		
CBDV-A	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable			
CBDV	0.0353	0.0351	0.003	%	0.806	< 20	Acceptable			
CBD-A	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable			
CBG-A	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable			
CBG	0.0688	0.0683	0.003	%	0.694	< 20	Acceptable			
CBD	3.50	3.13	0.003	%	11	< 20	Acceptable			
THCV	0.00575	0.00572	0.003	%	0.537	< 20	Acceptable			
THCVA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable			
CBN	0.00315	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable			
THC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable			
D8THC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable			
CBL	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable			
CBC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable			
THCA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable			
CBCA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable			

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

NA - Calculation Not Applicable given non-numerical results

Units of Measure:

% - Percent

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision: 1.00 Control: CFL-C21 Revised: 08/12/2019 Effective: 08/15/2019

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 15662 Units: mg/Kg Batch ID: 2004947										7
Matrix Spike/Matrix Spike D	Ouplicate Recov	veries	A CONTRACTOR OF THE PARTY OF TH				Sample ID:	20-005857-0		
Analyte	Result	MS Res	MSD Res	Spike	RPD%	Limit	MS % Rec	MSD % Rec	Limits	Notes
Acephate	0.000	1.038	1.030	1.000	0.8	< 30	103.8	103.0	50 - 150	
Acequinocyl	0.000	4.511	7.702	4.000	52.2	< 30	112.8	192.5	50 - 150	R,Q1
Acetamiprid	0.000	0.388	0.378	0.400	2.7	< 30	97.0	94.4	50 - 150	
Aldicarb	0.005	0.774	0.802	0.800	3.5	< 30	96.2	99.6	50 - 150	
Abamectin	0.000	1.099	1.070	1.000	2.7	< 30	109.9	107.0	50 - 150	
Azoxystrobin	0.009	0.343	0.322	0.400	6.3	< 30	83.4	78.2	50 - 150	ĺ
Bifenazate	0.003	0.394	0.348	0.400	12.2	< 30	97.6	86.3	50 - 150	
Bifenthrin	0.023	0.388	0.401	0.400	3.4	< 30	91.2	94.5	50 - 150	
Boscalid	0.000	0.633	0.803	0.800	23.7	< 30	79.1	100.3	50 - 150	
Carbaryl	0.000	0.362	0.349	0.400	3.5	< 30	90.5	87.3	50 - 150	
Carbofuran	0.000	0.301	0.306	0.400	1.5	< 30	75.3	76.4	50 - 150	
Chlorantraniliprol	0.001	0.419	0.403	0.400	4.1	< 30	104.7	100.5	50 - 150	
Chlorfenapyr	0.000	1.713	1.780	2.000	3.9	< 30	85.6	89.0	50 - 150	
Chlorpyrifos	0.000	0.134	0.123	0.400	8.6	< 30	33.5	30.8	50 - 150	Q
Clofentezine	0.004	0.402	0.366	0.400	9.3	< 30	99.6	90.6	50 - 150	
Cyfluthrin	0.000	1.700	1.529	2.000	10.6	< 30	85.0	76.5	30 - 150	
Cypermethrin	0.000	1.890	1.823	2.000	3.6	< 30	94.5	91.2	50 - 150	
Daminozide	0.000	1.910	1.956	2.000	2.4	< 30	95.5	97.8	30 - 150	
Diazinon	0.001	0.403	0.375	0.400	7.3	< 30	100.5	93.5	50 - 150	
Dichlorvos	0.031	1.754	1.782	2.000	1.6	< 30	86.1	87.6	50 - 150	
Dimethoat	0.000	0.400	0.404	0.400	1.1	< 30	99.9	101.0	50 - 150	
Ethoprophos	0.000	0.370	0.366	0.400	1.1	< 30	92.6	91.6	50 - 150	1
Etofenprox	0.000	0.907	0.930	0.800	2.6	< 30	113.3	116.3	50 - 150	
Etoxazol	0.000	0.478	0.432	0.400	10.1	< 30	119.4	107.9	50 - 150	
Fenoxycarb	0.010	0.329	0.318	0.400	3.4	< 30	79.9	77.1	50 - 150	
Fenpyroximat	0.000	0.758	0.742	0.800	2.1	< 30	94.7	92.7	50 - 150	
Fipronil	0.019	0.547	0.566	0.800	3.4	< 30	66.0	68.4	50 - 150	
Flonicamid	0.008	0.954	0.944	1.000	1.0	< 30	94.5	93.6	50 - 150	
Fludioxonil	0.000	0.814	0.781	0.800	4.1	< 30	101.7	97.6	50 - 150	<u> </u>
Hexythiazox	0.010	1.195	1.193	1.000	0.1	< 30	118.4	118.3	50 - 150	
Imazalil	0.000	0.373	0.360	0.400	3.4	< 30	93.1	90.0	50 - 150	
Imidacloprid	0.008	0.914	0.844	0.800	8.0	< 30	113.3	104.6	50 - 150	
Kresoxim-Methyl	0.000	0.724	0.719	0.800	0.6	< 30	90.5	89.9	50 - 150	
Malathion	0.000	0.360	0.357	0.400	1.0	< 30	90.1	89.2	50 - 150	
Metalaxyl	0.000	0.364	0.355	0.400	2.5	< 30	91.1	88.8	50 - 150	
Methiocarb	0.000	0.349	0.294	0.400	17.0	< 30	87.3	73.6	50 - 150	
Methomyl	0.000	0.847	0.814	0.800	3.9	< 30	105.9	101.8	50 - 150	
MGK 264	0.001	0.348	0.337	0.400	3.4	< 30	86.8	83.9	50 - 150	
Myclobutanil	0.000	0.386	0.379	0.400	1.8	< 30	96.5	94.8	50 - 150	
Naled	0.000	0.820	0.791	1.000	3.6	< 30	82.0	79.1	50 - 150	
Oxamyl	0.000	2.109	2.073	2.000	1.7	< 30	105.4	103.7	50 - 150	
Paclobutrazol	0.000	0.774	0.746	0.800	3.6	< 30	96.7	93.3	50 - 150	
Parathion Methyl	0.240	0.774	0.740	0.800	6.9	< 30	81.4	74.0	30 - 150	
Permethrin	0.012	0.832	0.455	0.400	5.8	< 30	104.4	110.8	50 - 150	
Phosmet	0.012	0.429	0.433	0.400	5.5	< 30	96.2	101.7	50 - 150	
Piperonyl butoxide	0.003	2.133	2.127	2.000	0.3	< 30	106.6	106.3	50 - 150	
Prallethrin	0.000	0.246	0.266	0.400	7.6	< 30	36.9	41.8	50 - 150	Q
Propiconazole	0.000	0.246	0.266	0.800	3.3	< 30	99.8	96.5	50 - 150	ų ų
Propoxur	0.000	0.798	0.772	0.400	1.8	< 30	90.8	89.1	50 - 150	-
					9.4	< 30	90.8			
Pyrethrins	0.030	0.413	0.453 0.473	0.413	2.1	< 30	120.0	102.5 117.5		
Pyridaben	0.003	0.483				< 30				
Spinosad	0.000	0.376	0.354	0.388	6.1		96.8	91.1		
Spiromesifen	0.103	0.431	0.404	0.400	6.5	< 30	82.0	75.2	50 - 150	
Spirotetramat	0.004	0.386	0.366	0.400	5.4	< 30	95.5	90.5	50 - 150	
Spiroxamine	0.000	0.763	0.787	0.800	3.0	< 30	95.4	98.3	50 - 150	
Tebuconazol	0.002	0.758	0.799	0.800	5.2	< 30	94.6	99.6	50 - 150	
Thiacloprid	0.000	0.396	0.385	0.400	2.8	< 30	99.0	96.3	50 - 150	
Thiamethoxam	0.000	0.406	0.412	0.400	1.3	< 30	101.6	102.9	50 - 150	
Trifloxystrobin	0.000	0.413	0.412	0.400	0.2	< 30	103.4	103.0	50 - 150	

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision: 1.00 Control: CFL-C21 Revised: 08/12/2019 Effective: 08/15/2019

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 15662 Method Blank	Units: mg/Kg Batch ID: 2004947 Laboratory Control Sample											
Analyte	Blank Result	Blank Limits	Notes	LCS Result	LCS Spike	LCS % Rec	Limits	Notes				
Acephate	0.000	< 0.200	1 140163	0.995	! 1.000	99.5	68.1 - 125	I				
Acequinocyl	0.000	< 1.000	1	4.487	4.000	112.2	79.4 - 118	-				
Acetamiprid	0.000	< 0.100	1	0.386	0.400	96.4	81.1 - 117					
Aldicarb	0.000	< 0.200	1	0.741	0.800	92.6	77.2 - 120					
Abamectin	0.000	< 0.288	1	0.839	1.000	83.9	74.3 - 125					
Azoxystrobin	0.013	< 0.100	1	0.354	0.400	88.4	72.7 - 126	-				
Bifenazate	0.000	< 0.100	1	0.382	0.400	95.4	81.5 - 116	-				
Bifenthrin	0.023	< 0.100	1	0.433	0.400	108.2	78.3 - 120	-				
Boscalid	0.000	< 0.100		0.688	0.800	86.0	75.4 - 126					
Carbaryl	0.000	< 0.100	1	0.383	0.400	95.7	79.9 - 119					
Carbofuran	0.000	< 0.100	1	0.402	0.400	100.5	81.6 - 118					
Chlorantraniliprol	0.001	< 0.100	1	0.397	0.400	99.2	74.8 - 127					
Chlorfenapyr	0.000	< 1.000	1	2.624	2.000	131.2	67.9 - 126	Q1				
Chlorpyrifos	0.024	< 0.100	1	0.412	0.400	103.0	73.1 - 117	Q.				
Clofentezine	0.003	< 0.100	1	0.404	0.400	101.0	67.1 - 125					
Cyfluthrin	0.000	< 1.000		1.741	2.000	87.0	69.8 - 130					
	0.000	< 1.000		2.119	2.000	105.9						
Cypermethrin Daminozide	0.000	< 1.000	1	1.912	2.000	95.6	80.1 - 119 75.0 - 120					
Diazinon	0.000	< 0.100	1	0.413	0.400	103.3	79.9 - 118					
Diazinon Dichlorvos	0.001	< 0.100	1	1.970	2.000	98.5	79.9 - 118					
			1			98.5						
Dimethoat	0.000	< 0.100	1	0.398	0.400	99.5	79.6 - 118 72.4 - 126					
Ethoprophos	0.000	< 0.100		0.360	0.400							
Etofenprox	0.016	< 0.100	1	0.810		101.2	82.4 - 116					
Etoxazol	0.000	< 0.100		0.403	0.400	100.9	77.4 - 120					
Fenoxycarb	0.011	< 0.100	1	0.429	0.400	107.2	82.7 - 115					
Fenpyroximat	0.000	< 0.100		0.815	0.800	101.8	82.4 - 115					
Fipronil	0.023	< 0.100		0.803	0.800	100.3	78.2 - 121					
Flonicamid	0.009	< 0.400		0.984	1.000	98.4	78.8 - 121					
Fludioxonil	0.003	< 0.100		0.820	0.800	102.5	73.1 - 136					
Hexythiazox	0.013	< 0.400		1.052	1.000	105.2	81.4 - 118					
Imazalil	0.000	< 0.100		0.433	0.400	108.2	79.0 - 126					
Imidacloprid	0.000	< 0.200		0.827	0.800	103.4	77.9 - 119					
Kresoxim-Methyl	0.000	< 0.100		0.783	0.800	97.9	75.5 - 126					
Malathion	0.001	< 0.100		0.400	0.400	99.9	77.6 - 120					
Metalaxyl	0.000	< 0.100		0.409	0.400	102.2	75.6 - 123					
Methiocarb	0.000	< 0.100		0.402	0.400	100.6	78.6 - 122					
Methomyl	0.000	< 0.200		0.831	0.800	103.8	73.0 - 125					
MGK 264	0.000	< 0.100		0.419	0.400	104.7	79.6 - 119					
Myclobutanil	0.000	< 0.100		0.412	0.400	102.9	83.2 - 115					
Naled	0.000	< 0.200		0.991	1.000	99.1	73.0 - 124					
Oxamyl	0.000	< 0.400		1.894	2.000	94.7	71.7 - 126					
Paclobutrazol	0.000	< 0.200		0.829	0.800	103.6	81.8 - 117					
Parathion Methyl	0.034	< 0.200		1.018	0.800	127.2	68.2 - 127	Q1				
Permethrin	0.014	< 0.100		0.403	0.400	100.9	78.8 - 117					
Phosmet	0.000	< 0.100		0.402	0.400	100.6	81.1 - 118					
Piperonyl butoxide	0.000	< 1.000		2.076	2.000	103.8	83.1 - 121					
Prallethrin	0.035	< 0.200		0.374	0.400	93.4	70.2 - 130					
Propiconazole	0.000	< 0.200		0.818	0.800	102.2	80.9 - 116					
Propoxur	0.000	< 0.100		0.396	0.400	98.9	81.7 - 115					
Pyrethrins	0.029	< 0.500		0.392	0.413	94.9	69.9 - 130					
Pyridaben	0.000	< 0.100		0.472	0.400	117.9	80.0 - 127					
Spinosad	0.000	< 0.100		0.415	0.388	106.9	83.1 - 125					
Spiromesifen	0.002	< 0.100		0.430	0.400	107.6	68.7 - 128					
Spirotetramat	0.004	< 0.100		0.389	0.400	97.3	80.5 - 118					
Spiroxamine	0.000	< 0.100		0.828	0.800	103.5	79.3 - 119					
Tebuconazol	0.000	< 0.200		0.822	0.800	102.7	79.6 - 119					
Thiacloprid	0.000	< 0.100		0.408	0.400	101.9	79.1 - 119					
Thiamethoxam	0.000	< 0.100		0.397	0.400	99.2	72.1 - 127					
Trifloxystrobin	0.000	< 0.100	1	0.414	0.400	103.5	79.9 - 118					

Report Number: 21-000929/D02.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

01/26/21 16:05 Received:

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

Report Number: 21-000929/D03.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

01/26/21 16:05 Received:

(Reported in milligrams per serving)

This is an amended version of report# 21-000929/D03.R00. Reason: Combine results with report 20-005908/D02.R00.

Customer: Sentia Wellness

Product identity: Lemon Ginger Drops 250mg Lot HDTO-1063

Client/Metrc ID:

Laboratory ID: 20-005908-0004

Summary

i otericy.						
Analyte CBD	Result 0.805	Limits	Units %	Status	CBD-Total (%)	0.805%
Analyte per 1ml	Result	Limits	Units	Status	CBD-Total per 1ml	7.61 mg/1ml
CBD per 1ml	7.61		mg/1ml	04.4	CBD-Total per 30ml	228 mg/30ml
Analyte per 30ml	Result	Limits	Units	Status		
CBD per 30ml	228		mg/30ml		THC Total (0/.)	<i.oo< td=""></i.oo<>

THC-Total (%)

Residual Solvents:

All analytes passing and less than LOQ.

Pesticides:

All analytes passing and less than LOQ.

Metals:

Less than LOQ for all analytes.

Sentia Wellness **Customer:**

Product identity: 10ml Lemon Ginger Drops, Lot# DR4PK-2, HDTO-1063

Client/Metrc ID:

Laboratory ID: 21-000929-0003 Sample Date: 01/26/21

Summary

Microbiology:

Less than LOQ for all analytes.

Report Number: 21-000929/D03.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

Customer: Sentia Wellness

PO Box 5665

Portland Oregon 97228

United States

Product identity: Lemon Ginger Drops 250mg Lot HDTO-1063

Client/Metrc ID: .

Sample Date:

Laboratory ID: 20-005908-0004
Relinquished by: Client *See COC*

Temp: 20.3 °C

Sample Results

Potency	Method J AOA	AC 2015 V98-6 (mod)	Batch: 2004897	Ana	alyze: 6/11/20 4:16:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBC	< LOQ		%	0.0033	
CBC-A [†]	< LOQ		%	0.0033	
CBC-Total [†]	< LOQ		%	0.0062	
CBD	0.805		%	0.0033	
CBD-A	< LOQ		%	0.0033	
CBD-Total	0.805		%	0.0062	
CBDV [†]	< LOQ		%	0.0033	
CBDV-A [†]	< LOQ		%	0.0033	
CBDV-Total [†]	< LOQ		%	0.0062	
CBG [†]	< LOQ		%	0.0033	
CBG-A [†]	< LOQ		%	0.0033	
CBG-Total	< LOQ		%	0.0062	
CBL [†]	< LOQ		%	0.0033	
CBN	< LOQ		%	0.0033	
$\Delta 8\text{-THC}^{\dagger}$	< LOQ		%	0.0033	
Δ9-THC	< LOQ		%	0.0033	
THC-A	< LOQ		%	0.0033	
THC-Total	< LOQ		%	0.0062	
THCV [†]	< LOQ		%	0.0033	
THCV-A [†]	< LOQ		%	0.0033	
THCV-Total [†]	< LOQ		%	0.0062	
Total Cannabinoids [†]	0.805		%		

Potency per 1ml	Method J AOA	AC 2015 V98-6 (mod)	Batch: 20048	97	Analyze: 6/11/20 4:16:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBC per 1ml	< LOQ		mg/1ml	0.0312	
CBC-A per 1ml	< LOQ		mg/1ml	0.0312	
CBC-Total per 1ml	< LOQ		mg/1ml	0.0586	
CBD per 1ml	7.61		mg/1ml	0.0312	
CBD-A per 1ml	< LOQ		mg/1ml	0.0312	
CBD-Total per 1ml	7.61		mg/1ml	0.0586	
CBDV per 1ml	< LOQ		mg/1ml	0.0312	

Page 2 of 17

Report Number: 21-000929/D03.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Potency per 1ml	Method J AOA	AC 2015 V98-6 (mod)	Batch: 2004897		Analyze: 6/11/20 4:16:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBDV-A per 1ml	< LOQ		mg/1ml	0.0312	
CBDV-Total per 1ml	< LOQ		mg/1ml	0.0583	
CBG per 1ml	< LOQ		mg/1ml	0.0312	
CBG-A per 1ml	< LOQ		mg/1ml	0.0312	
CBG-Total per 1ml	< LOQ		mg/1ml	0.0583	
CBL per 1ml	< LOQ		mg/1ml	0.0312	
CBN per 1ml	< LOQ		mg/1ml	0.0312	
$\Delta 8$ -THC per 1ml	< LOQ		mg/1ml	0.0312	
Δ 9-THC per 1ml	< LOQ		mg/1ml	0.0312	
THC-A per 1ml	< LOQ		mg/1ml	0.0312	
THC-Total per 1ml	< LOQ		mg/1ml	0.0586	
THCV per 1ml	< LOQ		mg/1ml	0.0312	
THCV-A per 1ml	< LOQ		mg/1ml	0.0312	
THCV-Total per 1ml	< LOQ		mg/1ml	0.0586	
Total Cannabinoids 1ml [†]	7.61		mg/1ml		

Potency per 30ml	Method J AO	AC 2015 V98-6 (mod)	Batch: 2004897		Analyze: 6/11/20 4:16:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBC per 30ml	< LOQ		mg/30ml	0.937	
CBC-A per 30ml	< LOQ		mg/30ml	0.937	
CBC-Total per 30ml	< LOQ		mg/30ml	1.76	
CBD per 30ml	228		mg/30ml	0.937	
CBD-A per 30ml	< LOQ		mg/30ml	0.937	
CBD-Total per 30ml	228		mg/30ml	1.76	
CBDV per 30ml	< LOQ		mg/30ml	0.937	
CBDV-A per 30ml	< LOQ		mg/30ml	0.937	
CBDV-Total per 30ml	< LOQ		mg/30ml	1.75	
CBG per 30ml	< LOQ		mg/30ml	0.937	
CBG-A per 30ml	< LOQ		mg/30ml	0.937	
CBG-Total per 30ml	< LOQ		mg/30ml	1.75	
CBL per 30ml	< LOQ		mg/30ml	0.937	
CBN per 30ml	< LOQ		mg/30ml	0.937	
$\Delta 8 ext{-THC per 30ml}$	< LOQ		mg/30ml	0.937	
$\Delta 9 ext{-THC per 30ml}$	< LOQ		mg/30ml	0.937	
THC-A per 30ml	< LOQ		mg/30ml	0.937	
THC-Total per 30ml	< LOQ		mg/30ml	1.76	
THCV per 30ml	< LOQ		mg/30ml	0.937	
THCV-A per 30ml	< LOQ		mg/30ml	0.937	
THCV-Total per 30ml	< LOQ		mg/30ml	1.76	
Total Cannabinoids 30ml [†]	228		mg/30ml		

Report Number: 21-000929/D03.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

01/26/21 16:05 Received:

Solvents	Method	EPA5021A			Units µg/g Batch	າ 2004831	Analyz	e 06/10/20	08:59 AM
Analyte	Result	Limits LO	Q Status	Notes	Analyte	Result	Limits	LOQ Status	Notes
1,4-Dioxane	< LOQ	380 1	00 pass		2-Butanol	< LOQ	5000	200 pass	
2-Ethoxyethanol	< LOQ	160 30	0.0 pass		2-Methylbutane	< LOQ		200	
2-Methylpentane	< LOQ	30	0.0		2-Propanol (IPA)	< LOQ	5000	200 pass	
2,2-Dimethylbutane	< LOQ	30	0.0		2,2-Dimethylpropane	< LOQ		200	
2,3-Dimethylbutane	< LOQ	30	0.0		3-Methylpentane	< LOQ		30.0	
Acetone	< LOQ	5000 2	200 pass		Acetonitrile	< LOQ	410	100 pass	
Benzene	< LOQ	2.00 1.	.00 pass		Butanes (sum)	< LOQ	5000	400 pass	
Cyclohexane	< LOQ	3880 2	00 pass		Ethanol [†]	< LOQ		200	
Ethyl acetate	< LOQ	5000 2	00 pass		Ethyl benzene	< LOQ		200	
Ethyl ether	< LOQ	5000 2	00 pass		Ethylene glycol	< LOQ	620	200 pass	
Ethylene oxide	< LOQ	50.0 30	0.0 pass		Hexanes (sum)	< LOQ	290	150 pass	
Isopropyl acetate	< LOQ	5000 2	00 pass		Isopropylbenzene	< LOQ	70.0	30.0 pass	
m,p-Xylene	< LOQ	2	200		Methanol	< LOQ	3000	200 pass	
Methylene chloride	< LOQ	600 2	00 pass		Methylpropane	< LOQ		200	
n-Butane	< LOQ	2	200		n-Heptane	< LOQ	5000	200 pass	
n-Hexane	< LOQ	30	0.0		n-Pentane	< LOQ		200	
o-Xylene	< LOQ	2	200		Pentanes (sum)	< LOQ	5000	600 pass	
Propane	< LOQ	5000 2	00 pass		Tetrahydrofuran	< LOQ	720	100 pass	
Toluene	< LOQ	890 1	00 pass		Total Xylenes	< LOQ		400	
Total Xylenes and Ethyl	< LOQ	2170 6	00 pass						

Report Number: 21-000929/D03.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Pesticides	Method	AOAC	2007.01 & EN	l 15662 (mod)	Units mg/kg Batch	2004947	Analy	ze 06/14/20 09:14 AM
Analyte	Result	Limits	LOQ Status	Notes	Analyte	Result	Limits	S LOQ Status Notes
Abamectin	< LOQ	0.50	0.250 pass		Acephate	< LOQ	0.40	0.250 pass
Acequinocyl	< LOQ	2.0	1.00 pass		Acetamiprid	< LOQ	0.20	0.100 pass
Aldicarb	< LOQ	0.40	0.200 pass		Azoxystrobin	< LOQ	0.20	0.100 pass
Bifenazate	< LOQ	0.20	0.100 pass		Bifenthrin	< LOQ	0.20	0.100 pass
Boscalid	< LOQ	0.40	0.200 pass		Carbaryl	< LOQ	0.20	0.100 pass
Carbofuran	< LOQ	0.20	0.100 pass		Chlorantraniliprole	< LOQ	0.20	0.100 pass
Chlorfenapyr	< LOQ	1.0	0.500 pass		Chlorpyrifos	< LOQ	0.20	0.100 pass
Clofentezine	< LOQ	0.20	0.100 pass		Cyfluthrin	< LOQ	1.0	0.500 pass
Cypermethrin	< LOQ	1.0	0.500 pass		Daminozide	< LOQ	1.0	0.500 pass
Diazinon	< LOQ	0.20	0.100 pass		Dichlorvos	< LOQ	1.0	0.500 pass
Dimethoate	< LOQ	0.20	0.100 pass		Ethoprophos	< LOQ	0.20	0.100 pass
Etofenprox	< LOQ	0.40	0.200 pass		Etoxazole	< LOQ	0.20	0.100 pass
Fenoxycarb	< LOQ	0.20	0.100 pass		Fenpyroximate	< LOQ	0.40	0.200 pass
Fipronil	< LOQ	0.40	0.200 pass		Flonicamid	< LOQ	1.0	0.400 pass
Fludioxonil	< LOQ	0.40	0.200 pass		Hexythiazox	< LOQ	1.0	0.400 pass
Imazalil	< LOQ	0.20	0.100 pass		Imidacloprid	< LOQ	0.40	0.200 pass
Kresoxim-methyl	< LOQ	0.40	0.200 pass		Malathion	< LOQ	0.20	0.100 pass
Metalaxyl	< LOQ	0.20	0.100 pass		Methiocarb	< LOQ	0.20	0.100 pass
Methomyl	< LOQ	0.40	0.200 pass		MGK-264	< LOQ	0.20	0.100 pass
Myclobutanil	< LOQ	0.20	0.100 pass		Naled	< LOQ	0.50	0.250 pass
Oxamyl	< LOQ	1.0	0.500 pass		Paclobutrazole	< LOQ	0.40	0.200 pass
Parathion-Methyl	< LOQ	0.20	0.200 pass		Permethrin	< LOQ	0.20	0.100 pass
Phosmet	< LOQ	0.20	0.100 pass		Piperonyl butoxide	< LOQ	2.0	1.00 pass
Prallethrin	< LOQ	0.20	0.200 pass		Propiconazole	< LOQ	0.40	0.200 pass
Propoxur	< LOQ	0.20	0.100 pass		Pyrethrin I (total)	< LOQ	1.0	0.500 pass
Pyridaben	< LOQ	0.20	0.100 pass		Spinosad	< LOQ	0.20	0.100 pass
Spiromesifen	< LOQ	0.20	0.100 pass		Spirotetramat	< LOQ	0.20	0.100 pass
Spiroxamine	< LOQ	0.40	0.200 pass		Tebuconazole	< LOQ	0.40	0.200 pass
Thiacloprid	< LOQ	0.20	0.100 pass		Thiamethoxam	< LOQ	0.20	0.100 pass
Trifloxystrobin	< LOQ	0.20	0.100 pass					

Metals								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Arsenic	< LOQ		mg/kg	0.0389	2004881	06/10/20	AOAC 2013.06 (mod.)	X
Cadmium	< LOQ		mg/kg	0.0389	2004881	06/10/20	AOAC 2013.06 (mod.)	X
Lead	< LOQ		mg/kg	0.0389	2004881	06/10/20	AOAC 2013.06 (mod.)	X
Mercury	< LOQ		mg/kg	0.0195	2004881	06/10/20	AOAC 2013.06 (mod.)	X

Nutrition								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Density	0.9448		g/ml	0.1000	2005037	06/16/20	DMA 35™	X

Report Number: 21-000929/D03.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

Customer: Sentia Wellness

PO Box 5665

Portland Oregon 97228

United States

Product identity: 10ml Lemon Ginger Drops, Lot# DR4PK-2, HDTO-1063

Client/Metrc ID: .

Sample Date: 01/26/21

Laboratory ID: 21-000929-0003

Temp: 17.4 °C

Sample Results

Microbiology								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Aerobic Plate Count	< LOQ		cfu/g	10	2100820	01/30/21	AOAC 990.12 (Petrifilm)	X,I
E.coli	< LOQ		cfu/g	10	2100821	01/30/21	AOAC 991.14 (Petrifilm)	X,I
Total Coliforms	< LOQ		cfu/g	10	2100821	01/30/21	AOAC 991.14 (Petrifilm)	X,I
Mold (RAPID Petrifilm)	< LOQ		cfu/g	10	2100824	01/30/21	AOAC 2014.05 (RAPID)	X,I
Yeast (RAPID Petrifilm)	< LOQ		cfu/g	10	2100824	01/30/21	AOAC 2014.05 (RAPID)	X,I
Salmonella spp. by PCR	Negative		/5g		2100826	01/29/21	AOAC 2020.02	X,I

Mycotoxins								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Aflatoxin B1 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Aflatoxin B2 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Aflatoxin G1 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Aflatoxin G2 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Deoxynivalenol [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Fumonisin B1 [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Fumonisin B2 [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	
HT2-Toxin [†]	< LOQ		μg/kg	40.0	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Nivalenol [†]	< LOQ		μg/kg	400	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Ochratoxin A [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Ochratoxin B [†]	< LOQ		μg/kg	2.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
T2-Toxin [†]	< LOQ		μg/kg	20.0	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Zearalenone [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	

Report Number: 21-000929/D03.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

† = Analyte not NELAP accredited.

Units of Measure

cfu/g = Colony forming units per gram μ g/kg = Micrograms per kilogram = parts per billion (ppb) /5g = Per 5 grams % wt = μ g/g divided by 10,000

Glossary of Qualifiers

I: Insufficient sample received to meet method requirements.

X: Not ORELAP accredited.

Approved Signatory

Derrick Tanner General Manager

Report Number:

21-000929/D03.R01

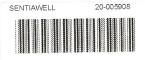
Report Date:

02/02/2021

ORELAP#:

OR100028

Purchase Order:


Received:

01/26/21 16:05

Hemp Products Chain of Custody Record

Revision: 0.00 Control#: CF002 Rev: 02/27/2020 Eff: 02/27/2020 ORELAP ID: OR100028

entia Wellness					An	alysis	Reque	ested				PO Number:						
in Harbacek y Location d State: <u>OR</u> Z _{Its:} <u>erin.harbacek@sentiaw</u>	vellness.com	ency	icides (OR 59)	dual Solvents	vy Metals	robiology	nsity - per client	7			Proj P Custo Report Tu Sample	ample Report units Serving size						
nt Sample Identification	Date	Pote	Pest	Resi	Неа	Σ	3				Type †	(potency)		Comments/Metrc ID				
ored Drops 250mg		1	√	1	√	√	1				Т	%		Drops reporting units: %, mg/g,				
DTO-1344														mg/container				
der Drops 250mg		1	1	√	1	1	/				Т	%	reporting units: %, mg/30mL					
DTO-1408														-				
ermint Drops 250mg		1	1	1	1	1	1				Т	%		Micro: APC, Y&M, Ecoli/coliform Salmonella spp				
DTO-1062																		
n Ginger Drops 250mg		1	1	1	1	1	1				Т	%						
HDTO-1063																		
				Recen	ved by:							110	Lab Use Only:					
Sla 69	1:15pm	(5					le	(1	1515	□ Shipped Via: or □ Client drop off Evidence of cooling: □ yes □ No - Temp (°C): 2 ○ . 3 Sample in good condition: □ yes □ No □ Cash □ Check □ CC □ Net: Prelog storage:							
	A Location State: OR Z	n Harbacek y Location d State: OR Zip: 97230 Its: erin.harbacek@sentiawellness.com	n Harbacek y Location d State: OR Zip: 97230 tts: erin.harbacek@sentiawellness.com □ Fx Results: () rent): nt Sample Identification ored Drops 250mg DTO-1344 der Drops 250mg DTO-1408 rmint Drops 250mg DTO-1062 n Ginger Drops 250mg d Ginger Drops 250mg DTO-1063 nquished By: Date Time	In Harbacek In Idarbacek In Idarbacek In Idarbacek In Idarbacek Idarbace	n Harbacek I Location d	The state of the s	The state of the s	The state of the s	In Harbacek In Indication	The state of the s	The state of the s	And wellness In Harbacek In Harbacek In Harbacek In Harbacek Its: erin.harbacek@sentiawellness.com Its: erin	And wellness In Harbacek In Harbacek In Harbacek In Harbacek It Coation It State: OR Zip: 97230 Its: erin.harbacek@sentiawellness.com Its: erin.ha	PO Number: Project Number:				

† - Sample type codes: Topicals (L); Edibles (E); Tincture (T); Bath Salts (S); Beverages (B) Report unit options: %; mg/g; mg/serving

12423 NE Whitaker Way Portland, OR 97230

P: (503) 254-1794 | Fax: (503) 254-1452 info@columbialaboratories.com

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these ter Page _____of___www.columbialaboratories.com

Report Number:

21-000929/D03.R01

Report Date:

02/02/2021

ORELAP#:

OR100028

Purchase Order:

Received:

01/26/21 16:05

Hemp Products Chain of Custody Record

Revision: 0.00 Control#: CF002 Rev: 02/27/2020 Eff: 02/27/2020

ORELAP ID: OR100028

Com	pany: Sentia Wellness		Analysis Requested									PO Number:			
Con Stree City: S En	tact: Erin Harbacek tt: Sandy Location Portland State: OR 2 ail Results: erin.harbacek@sentiav tt	vellness.com		Pesticides (OR 59)	Residual Solvents	Heavy Metals	Microbiology				Proj Pr Custor Report Tur	ect Number: roject Name: m Reporting: to State - □ M rn¬around time	Imber:		
Lab ID	Client Sample Identification	Date	Potency	Pestici	Residu	Heavy	Microk				Sample Type †	Report units (potency)	Serving size (edibles)	Comments/Metrc ID	
1	83mg Unflavored Drops WIP848, HDTO-1344	1/26/21					√				Т			Micro: APC, Y&M, Ecoli/coliform Salmonella spp, Mycotoxins	
2	83mg Lavender Drops	1/26/21					√				Т		Will need to combine all 4 W lot reports with their respective		
3	WIP846, HDTO-1408 83mg Lemon Ginger Drops	1/26/21					√				Т			HDTO lot reports. I will clarify later on.	
4	WIP847, HDTO-1063 83mg Peppermint Drops	1/26/21					√		+		Т			_	
,	WIP845, HDTO-1062														
	Relinquished By: Da	ate Time			Receiv	ved by:			Date	Time			Lab Use (Only:	
	lle 1/2	3:53	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		:=)	J	В	1	26	16:05	□ Shipped Via: or □ Client drop of Evidence of cooling: □ yes □ No - Temp (°C): 1 · 4 Sample in good condition; □ yes □ No □ Cash □ Check □ □ CC □ Net: Prelog storage:			Temp (°C): 17.4	

†- <u>Sample type codes:</u> Topicals (L); Edibles (E); Tincture (T); Bath Salts (S); Beverages (B)

Report unit options: %; mg/g; mg/serving

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms.

12423 NE Whitaker Way

P: (503) 254-1794 | Fax: (503) 254-1452

Page | of 2 www.columbialaboratories.com

Report Number: 2

21-000929/D03.R01

Report Date:

02/02/2021

ORELAP#:

OR100028

Purchase Order:

Received:

01/26/21 16:05

Hemp Products Chain of Custody Record

Revision: 0.00 Control#: CF002 Rev: 02/27/2020 Eff: 02/27/2020

ORELAP ID: **OR100028**

PRICING AND CHARGES

Prices to be charged for work performed for CUSTOMER are those currently published in the Columbia Laboratories (herein referred to as "the LAB". Standard pricing applies unless otherwise agreed in writing by the CUSTOMER and the LAB. CUSTOMER must notify the LAB of price quotation at the time of the transfer of sample(s) to the LAB. Any cancellation of testing requirements will result in charges being assessed on all testing completed prior to the notice of cancellation. Unless otherwise agreed upon, samples containing hazardous material will be shipped back to client at their expense, or disposed of at a certain fee, waste category dependent. New accounts are accepted with full payment in advance by cash, check, Visa or Mastercard. A credit line may be established with an approved credit application.

DELIVERY AND LIABILITY LIMITATIONS

The specific format of the goods will be defined by CUSTOMER to the LAB upon delivery of the sample(s) to the LAB. The LAB will analyze samples provided by CUSTOMER as requested by CUSTOMER in accordance with the procedures documented in the Quality Assurance Plan (QAP). Samples are retained for 30 days after receipt. If additional time is desired, then a written request is required, and an additional monthly fee will apply.

CONFIDENTIALITY

The LAB will treat all information regarding work performed for CUSTOMER as proprietary and confidential. No CUSTOMER information will be released to third persons without the written request of the CUSTOMER.

LIMITATION OF LIABILITY AND WARRANTY

The LAB gives no warranty, express or implied, or of fitness for a particular purpose, in connection with its analytical testing or reporting. Any liability of the LAB to CUSTOMER or any third party shall be limited to the cost of analysis charged to CUSTOMER.

PAST DUE ACCOUNTS

Credit line account are payable within 30 days. Accounts that are 60 days past due will incur 1½/2% per month on all past due sums until paid in full and will automatically default to cash on delivery (COD). Reports will not be released unless payment on past and current invoices are received. Customer agrees to pay the interest as a service charge and all the LAB's collection costs, including reasonable attorney fees.

EXPERT TESTIMONY AND COURT APPEARANCES

In the event CUSTOMER requires the further written opinion or testimony of any employee of the LAB, including response to a subpoena issued by CUSTOMER or any third person, CUSTOMER agrees to pay such additional fees and expenses as may be reasonably assessed by the LAB.

ALTERNATIVE DISPUTE RESOLUTION (ADR)

Any disputes arising out of this Agreement or the analytical testing or reporting by the LAB shall be settled through mediation and/or arbitration rather than litigation, and the cost of the ADR shall be borne equally by both parties.

APPLICABLE LAW

Legal matters arising from work performed by the LAB for CUSTOMER will be construed and interpreted in accordance with the laws for the state of Oregon. When sending, transferring, or submitting samples, the CUSTOMER assumes full responsibility for complying with all applicable state and federal laws

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms.

12423 NE Whitaker Way Portland, OR 97230 P: (503) 254-1794 | Fax: (503) 254-1452 info@columbialaboratories.com

Page 2 of 2 www.columbialaboratories.com

Report Number: 21-000929/D03.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Laboratory Quality Control Results

EPA 5021	Lui	Joiate	ı y Qu	unity com	roi kesuit		tch ID:	200483	31			
Method Blank					Laborato	ry Control S	ample					
Analyte	Result		LOQ	Notes	Result	Spike	Units	% Rec	L	im	its	Notes
Propane	ND	<	200		1430	1,190	µg/g	120.2	70	-	130	
Isobutane	ND	<	200		1870	1,520	μg/g	123.0	70	٠	130	
Butane	ND	<	200		1910	1,520	μg/g	125.7	70	٠	130	
2,2-Dimethylpropane	ND	<	200		2330	1,910	μg/g	122.0	70		130	
Methanol	ND	<	200		3650	3,210	μg/g	113.7	70		130	
Ethylene Oxide	ND	<	30		156	117	μg/g	133.3	70		130	Q1
2-Methylbutane	ND	<	200		3250	3,210	µg/g	101.2	70		130	
Pentane	ND	<	200		3420	3,210	µg/g	106.5	70		130	
Ethanol	ND	<	200		3620	3,210	µg/g	112.8	70		130	
Ethyl Ether	ND	<	200		3410	3,230	µg/g	105.6	70		130	
2,2-Dimethylbutane	ND	<	30		325	326	µg/g	99.7	70		130	
Acetone	ND	<	200		3530	3,200	µg/g	110.3	70		130	
2-Propanol	ND	٧	200		3680	3,210	µg/g	114.6	70	٠	130	
Acetonitrile	ND	٧	100		1040	972	µg/g	107.0	70	٠	130	
2,3-Dimethylbutane	ND	٧	30		411	332	µg/g	123.8	70	٠	130	
Dichloromethane	ND	٧	200		996	972	μg/g	102.5	70		130	
2-Methylpentane	ND	٧	30		288	324	μg/g	88.9	70		130	
3-Methylpentane	ND	٧	30		339	326	μg/g	104.0	70		130	
Hexane	ND	<	30		350	335	µg/g	104.5	70		130	
Ethyl acetate	ND	٧	200		3520	3,210	μg/g	109.7	70		130	
2-Butanol	ND	٧	200		3490	3,210	μg/g	108.7	70		130	
Tetrahydrofuran	ND	<	100		1010	964	μg/g	104.8	70		130	
Cyclohexane	ND	٧	200		3290	3,200	μg/g	102.8	70	٠	130	
Benzene	ND	<	1		53.7	46.1	μg/g	116.5	70		130	
Isopropyl Acetate	ND	٧	200		3460	3,200	µg/g	108.1	70	٠	130	
Heptane	ND	٧	200		3460	3,210	μg/g	107.8	70		130	
1,4-Dioxane	ND	٧	100		967	976	μg/g	99.1	70		130	
2-Ethoxyethanol	ND	٧	30		356	340	μg/g	104.7	70		130	
Ethylene Glycol	ND	٧	200		819	972	µg/g	84.3	70		130	
Toluene	ND	٧	200		1010	963	µg/g	104.9	70		130	
Ethylbenzene	ND	٧	200		1910	1,920	µg/g	99.5	70	-	130	
m,p-Xylene	ND	<	200		1870	1,950	µg/g	95.9	70	-	130	
o-Xylene	ND	٧	200		1970	1,940	µg/g	101.5	70	٠	130	
Cumene	ND	٧	30		335	327	μg/g	102.4	70	-	130	

Report Number: 21-000929/D03.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Sample ID: 20-005727-0001 QC - Sample Duplicate

Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Isobutane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Butane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2,2-Dimethylpropane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Methanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30	μg/g	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Pentane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethyl Ether	ND	ND	200	μg/g	0.0	< 20	Acceptable	
2,2-Dimethylbutane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
Acetone	ND	ND	200	μg/g	0.0	< 20	Acceptable	
2-Propanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Acetonitrile	ND	ND	100	μg/g	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
Dichloromethane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Methylpentane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
3-Methylpentane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Hexane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Ethyl acetate	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Butanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100	µg/g	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Benzene	ND	ND	1	μg/g	0.0	< 20	Acceptable	
Isopropyl Acetate	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Heptane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100	μg/g	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Toluene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethylbenzene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
m,p-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
o-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Cumene	ND	ND	30	µg/g	0.0	< 20	Acceptable	

ND - None Detected at or above MRL

RPD - Relative Percent Difference LOQ - Limit of Quantitation

* Screening only
Q1 Quality Control result biased high. Only non detect samples reported.

μg/g- Microgram per gram or ppm mg/Kg - Milligrams per Kilogram Aw- Water Activity unit

Report Number: 21-000929/D03.R01

02/02/2021 Report Date: ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

Laboratory Quality Control Results

J AOAC 2015	J AOAC 2015 V98-6 Batch ID: 2004897								
Laboratory C	Control Sample								
Analyte	Result		Spike	Units	% Rec	Limits	Evaluation	Notes	
CBDV-A	0.0103		0.01	%	103	85.0 - 115	Acceptable		
CBDV	0.0102		0.01	%	102	85.0 - 115	Acceptable		
CBD-A	0.00945		0.01	%	94.5	85.0 - 115	Acceptable		
CBG-A	0.0101		0.01	%	101	85.0 - 115	Acceptable		
CBG	0.00987		0.01	%	98.7	85.0 - 115	Acceptable		
CBD	0.00897		0.01	%	89.7	85.0 - 115	Acceptable		
THCV	0.00981		0.01	%	98.1	85.0 - 115	Acceptable		
THCVA	0.0100		0.01	%	100	85.0 - 115	Acceptable		
CBN	0.00984		0.01	%	98.4	85.0 - 115	Acceptable		
THC	0.0103		0.01	%	103	85.0 - 115	Acceptable		
D8THC	0.00991		0.01	%	99.1	85.0 - 115	Acceptable		
CBL	0.0101		0.01	%	101	85.0 - 115	Acceptable		
CBC	0.0104		0.01	%	104	85.0 - 115	Acceptable		
THCA	0.00894		0.01	%	89.4	85.0 - 115	Acceptable		
CBCA	0.00993		0.01	%	99.3	85.0 - 115	Acceptable		

Method Blank

Analyte	Result	LOQ	Units	Limits	Evaluation	Notes
CBDV-A	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBDV	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBD-A	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBG-A	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBG	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBD	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCV	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCVA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBN	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
D8THC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBL	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBCA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

% - Percent

Report Number: 21-000929/D03.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

Laboratory Quality Control Results

J AOAC 2015 V98-6 Batch ID: 2004897								
Sample Dupli	cate							
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes
CBDV-A	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBDV	0.0353	0.0351	0.003	%	0.806	< 20	Acceptable	
CBD-A	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBG-A	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBG	0.0688	0.0683	0.003	%	0.694	< 20	Acceptable	
CBD	3.50	3.13	0.003	%	11	< 20	Acceptable	
THCV	0.00575	0.00572	0.003	%	0.537	< 20	Acceptable	
THCVA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBN	0.00315	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
THC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
D8THC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBL	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
THCA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBCA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

NA - Calculation Not Applicable given non-numerical results

Units of Measure:

% - Percent

Report Number: 21-000929/D03.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision: 1.00 Control: CFL-C21 Revised: 08/12/2019 Effective: 08/15/2019

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 15662 Units: mg/Kg Batch ID: 2004947										7
Matrix Spike/Matrix Spik	e Duplicate Reco							20-005857-0		
Analyte	Result	MS Res	MSD Res	Spike	RPD%	Limit		MSD % Rec	Limits	Notes
Acephate	0.000	1.038	1.030	1.000	0.8	< 30	103.8	103.0	50 - 150	
Acequinocyl	0.000	4.511	7.702	4.000	52.2	< 30	112.8	192.5	50 - 150	R,Q1
Acetamiprid	0.000	0.388	0.378	0.400	2.7	< 30	97.0	94.4	50 - 150	
Aldicarb	0.005	0.774	0.802	0.800	3.5	< 30	96.2	99.6	50 - 150	
Abamectin	0.000	1.099	1.070	1.000	2.7	< 30	109.9	107.0	50 - 150	
Azoxystrobin	0.009	0.343	0.322	0.400	6.3	< 30	83.4	78.2	50 - 150	
Bifenazate	0.003	0.394	0.348	0.400	12.2	< 30	97.6	86.3	50 - 150	
Bifenthrin	0.023	0.388	0.401	0.400	3.4	< 30	91.2	94.5	50 - 150	
Boscalid	0.000	0.633	0.803	0.800	23.7	< 30	79.1	100.3	50 - 150	
Carbaryl	0.000	0.362	0.349	0.400	3.5	< 30	90.5	87.3	50 - 150	
Carbofuran	0.000	0.301	0.306	0.400	1.5	< 30	75.3	76.4	50 - 150	
Chlorantraniliprol	0.001	0.419	0.403	0.400	4.1	< 30	104.7	100.5	50 - 150	
Chlorfenapyr	0.000	1.713	1.780	2.000	3.9	< 30	85.6	89.0	50 - 150	
Chlorpyrifos	0.000	0.134	0.123	0.400	8.6	< 30	33.5	30.8	50 - 150	Q
Clofentezine	0.004	0.402	0.366	0.400	9.3	< 30	99.6	90.6	50 - 150	
Cyfluthrin	0.000	1.700	1.529	2.000	10.6	< 30	85.0	76.5	30 - 150	l
Cypermethrin	0.000	1.890	1.823	2.000	3.6	< 30	94.5	91.2	50 - 150	
Daminozide	0.000	1.910	1.956	2.000	2.4	< 30	95.5	97.8	30 - 150	
Diazinon	0.001	0.403	0.375	0.400	7.3	< 30	100.5	93.5	50 - 150	
Dichlorvos	0.031	1.754	1.782	2.000	1.6	< 30	86.1	87.6	50 - 150	
Dimethoat	0.000	0.400	0.404	0.400	1.1	< 30	99.9	101.0	50 - 150	
Ethoprophos	0.000	0.370	0.366	0.400	1.1	< 30	92.6	91.6	50 - 150	
Etofenprox	0.000	0.907	0.930	0.800	2.6	< 30	113.3	116.3	50 - 150	
Etoxazol	0.000	0.478	0.432	0.400	10.1	< 30	119.4	107.9	50 - 150	
Fenoxycarb	0.010	0.329	0.318	0.400	3.4	< 30	79.9	77.1	50 - 150	
Fenpyroximat	0.000	0.758	0.742	0.800	2.1	< 30	94.7	92.7	50 - 150	
Fipronil	0.019	0.547	0.566	0.800	3.4	< 30	66.0	68.4	50 - 150	
Flonicamid	0.008	0.954	0.944	1.000	1.0	< 30	94.5	93.6	50 - 150	
Fludioxonil	0.000	0.814	0.781	0.800	4.1	< 30	101.7	97.6	50 - 150	
Hexythiazox	0.010	1.195	1.193	1.000	0.1	< 30	118.4	118.3	50 - 150	
Imazalil	0.000	0.373	0.360	0.400	3.4	< 30	93.1	90.0	50 - 150	
Imidacloprid	0.008	0.914	0.844	0.800	8.0	< 30	113.3	104.6	50 - 150	
Kresoxim-Methyl	0.000	0.724	0.719	0.800	0.6	< 30	90.5	89.9	50 - 150	
Malathion	0.000	0.360	0.357	0.400	1.0	< 30	90.1	89.2	50 - 150	1
Metalaxyl	0.000	0.364	0.355	0.400	2.5	< 30	91.1	88.8	50 - 150	
Methiocarb	0.000	0.349	0.294	0.400	17.0	< 30	87.3	73.6	50 - 150	
Methomyl	0.000	0.847	0.814	0.800	3.9	< 30	105.9	101.8	50 - 150	
MGK 264	0.001	0.348	0.337	0.400	3.4	< 30	86.8	83.9	50 - 150	l —
Myclobutanil	0.000	0.386	0.379	0.400	1.8	< 30	96.5	94.8	50 - 150	
Naled	0.000	0.820	0.791	1.000	3.6	< 30	82.0	79.1	50 - 150	
Oxamyl	0.000	2.109	2.073	2.000	1.7	< 30	105.4	103.7	50 - 150	
Paclobutrazol	0.000	0.774	0.746	0.800	3.6	< 30	96.7	93.3	50 - 150	
Parathion Methyl	0.240	0.892	0.832	0.800	6.9	< 30	81.4	74.0	30 - 150	
Permethrin	0.012	0.429	0.832	0.400	5.8	< 30	104.4	110.8	50 - 150	l
Phosmet	0.003	0.388	0.410	0.400	5.5	< 30	96.2	101.7	50 - 150	
Piperonyl butoxide	0.000	2.133	2.127	2.000	0.3	< 30	106.6	106.3	50 - 150	-
Prallethrin	0.099	0.246	0.266	0.400	7.6	< 30	36.9	41.8	50 - 150	Q
Propiconazole	0.000	0.798	0.200	0.800	3.3	< 30	99.8	96.5	50 - 150	_ ~
Propoxur	0.002	0.756	0.772	0.400	1.8	< 30	90.8	89.1	50 - 150	-
Pyrethrins	0.030	0.363	0.338	0.413	9.4	< 30	92.7	102.5	50 - 150	
Pyridaben	0.003	0.413	0.433	0.413	2.1	< 30	120.0	117.5	50 - 150	l
Spinosad	0.000	0.483	0.473	0.400	6.1	< 30	96.8	91.1	50 - 150	-
Spinosad Spiromesifen	0.000	0.376	0.354	0.400	6.5	< 30	82.0	75.2	50 - 150	
Spiromesiten Spirotetramat	0.103	0.431	0.404	0.400	5.4	< 30	95.5	90.5		-
	20000000					< 30				
Spiroxamine	0.000	0.763	0.787	0.800	3.0		95.4	98.3	50 - 150 50 - 150	-
Tebuconazol	0.002	0.758	0.799	0.800	5.2	< 30	94.6	99.6		
Thiacloprid	0.000	0.396	0.385	0.400	2.8	< 30	99.0	96.3	50 - 150	
Thiamethoxam	0.000	0.406	0.412	0.400	1.3	< 30	101.6	102.9	50 - 150	
Trifloxystrobin	0.000	0.413	0.412	0.400	0.2	< 30	103.4	103.0	50 - 150	

Report Number: 21-000929/D03.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision: 1.00 Control: CFL-C21 Revised: 08/12/2019 Effective: 08/15/2019

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 1566 Method Blank	Units: mg/Kg Batch ID: 2004947 Laboratory Control Sample									
Analyte Acephate	Blank Result	8 Slank Limits	Notes	LCS Result 0.995	LCS Spike	LCS % Rec 99.5	Limits 68.1 - 125	Notes		
	120000000000000000000000000000000000000		1		I DOMESTIC N					
Acequinocyl	0.000	< 1.000	1	4.487	4.000	112.2	79.4 - 118	_		
Acetamiprid	0.000	< 0.100	1	0.386	0.400	96.4	81.1 - 117	ļ		
Aldicarb	0.000	< 0.200	1	0.741	0.800	92.6	77.2 - 120			
Abamectin	0.000	< 0.288	1	0.839	1.000	83.9	74.3 - 125			
Azoxystrobin	0.013	< 0.100		0.354	0.400	88.4	72.7 - 126	1		
Bifenazate	0.000	< 0.100	1	0.382	0.400	95.4	81.5 - 116	1		
Bifenthrin	0.023	< 0.100		0.433	0.400	108.2	78.3 - 120			
Boscalid	0.000	< 0.100		0.688	0.800	86.0	75.4 - 126	1		
Carbaryl	0.000	< 0.100		0.383	0.400	95.7	79.9 - 119			
Carbofuran	0.000	< 0.100		0.402	0.400	100.5	81.6 - 118			
Chlorantraniliprol	0.001	< 0.100		0.397	0.400	99.2	74.8 - 127			
Chlorfenapyr	0.000	< 1.000		2.624	2.000	131.2	67.9 - 126	Q1		
Chlorpyrifos	0.024	< 0.100	1	0.412	0.400	103.0	73.1 - 117			
Clofentezine	0.003	< 0.100		0.404	0.400	101.0	67.1 - 125			
Cyfluthrin	0.000	< 1.000	1	1.741	2.000	87.0	69.8 - 130	į .		
Cypermethrin	0.000	< 1.000		2.119	2.000	105.9	80.1 - 119			
Daminozide	0.000	< 1.000		1.912	2.000	95.6	75.0 - 120			
Diazinon	0.001	< 0.100		0.413	0.400	103.3	79.9 - 118			
Dichlorvos	0.029	< 0.500		1.970	2.000	98.5	75.9 - 117			
Dimethoat	0.000	< 0.100		0.398	0.400	99.5	79.6 - 118			
Ethoprophos	0.000	< 0.100	1	0.360	0.400	90.1	72.4 - 126	1		
Etofenprox	0.016	< 0.100		0.810	0.800	101.2	82.4 - 116			
Etoxazol	0.000	< 0.100		0.403	0.400	100.9	77.4 - 120	1		
enoxycarb	0.011	< 0.100		0.429	0.400	107.2	82.7 - 115			
enpyroximat	0.000	< 0.100		0.815	0.800	101.8	82.4 - 115			
Fipronil	0.023	< 0.100		0.803	0.800	100.3	78.2 - 121			
Flonicamid	0.009	< 0.400		0.984	1.000	98.4	78.8 - 121			
Fludioxonil	0.003	< 0.100		0.820	0.800	102.5	73.1 - 136			
Hexythiazox	0.013	< 0.400		1.052	1.000	105.2	81.4 - 118			
lmazalil	0.000	< 0.100		0.433	0.400	108.2	79.0 - 126			
Imidacloprid	0.000	< 0.200		0.827	0.800	103.4	77.9 - 119			
Kresoxim-Methyl	0.000	< 0.100		0.783	0.800	97.9	75.5 - 126			
Malathion	0.001	< 0.100		0.400	0.400	99.9	77.6 - 120	i –		
Metalaxyl	0.000	< 0.100		0.409	0.400	102.2	75.6 - 123	i –		
Methiocarb	0.000	< 0.100	1	0.402	0.400	100.6	78.6 - 122	İ		
Methomyl	0.000	< 0.200		0.831	0.800	103.8	73.0 - 125	1		
MGK 264	0.000	< 0.100	1	0.419	0.400	104.7	79.6 - 119	1		
Myclobutanil	0.000	< 0.100		0.412	0.400	102.9	83.2 - 115			
Naled	0.000	< 0.200		0.991	1.000	99.1	73.0 - 124	1		
Oxamyl	0.000	< 0.400		1.894	2.000	94.7	71.7 - 126			
Paclobutrazol	0.000	< 0.200	1	0.829	0.800	103.6	81.8 - 117	1		
Parathion Methyl	0.034	< 0.200	1	1.018	0.800	127.2	68.2 - 127	Q1		
Permethrin	0.014	< 0.100		0.403	0.400	100.9	78.8 - 117	1		
Phosmet	0.000	< 0.100	1	0.402	0.400	100.6	81.1 - 118	t		
Piperonyl butoxide	0.000	< 1.000		2.076	2.000	103.8	83.1 - 121			
Prallethrin	0.035	< 0.200		0.374	0.400	93.4	70.2 - 130	1		
Propiconazole	0.000	< 0.200		0.818	0.800	102.2	80.9 - 116	1		
Propoxur	0.000	< 0.100		0.396	0.400	98.9	81.7 - 115	1		
Pyrethrins	0.029	< 0.500	1	0.392	0.413	94.9	69.9 - 130	i -		
Pyridaben	0.000	< 0.100		0.472	0.400	117.9	80.0 - 127	1		
Spinosad	0.000	< 0.100	1	0.415	0.388	106.9	83.1 - 125	1		
Spiromesifen	0.002	< 0.100		0.430	0.400	107.6	68.7 - 128	1		
Spirotetramat	0.004	< 0.100	1	0.389	0.400	97.3	80.5 - 118	1		
Spiroxamine	0.000	< 0.100	1	0.828	0.800	103.5	79.3 - 119	1		
rebuconazol	0.000	< 0.200	1	0.822	0.800	102.7	79.6 - 119	i .		
Thiacloprid	0.000	< 0.100		0.408	0.400	101.9	79.1 - 119	1		
Thiamethoxam	0.000	< 0.100	1	0.397	0.400	99.2	72.1 - 127	1		
Trifloxystrobin	0.000	< 0.100	1	0.414	0.400	103.5	79.9 - 118	-		

Report Number: 21-000929/D03.R01

02/02/2021 Report Date: ORELAP#: OR100028

Purchase Order:

01/26/21 16:05 Received:

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

This is an amended version of report# 21-000929/D05.R00. Reason: Combine results with report 20-005908/D05.R00.

Customer: Sentia Wellness

Product identity: Lavender Drops 250mg Lot HDTO-1408

Client/Metrc ID:

Laboratory ID: 20-005908-0002

Summary

Analyte	Result	Limits	Units	Status	CBD-Total (%)	0.814%
CBD	0.814		%			
Analyte per 1ml	Result	Limits	Units	Status	CBD-Total per 1ml	7.69 mg/1ml
CBD per 1ml	7.69		mg/1ml			
					CBD-Total per 30ml	231 mg/30ml
Analyte per 30ml	Result	Limits	Units	Status		
CBD per 30ml	231		mg/30ml		THC-Total (%)	<loq< td=""></loq<>
					Reported in millig	rams per serving)

Residual Solvents:

All analytes passing and less than LOQ.

Pesticides:

All analytes passing and less than LOQ.

Metals:

Less than LOQ for all analytes.

Customer: Sentia Wellness **Product identity:** 10ml Lavender Drops, Lot# DR4PK-2, HDTO-1408

Client/Metrc ID:

21-000929-0002 Sample Date: 01/26/21 Laboratory ID:

Summary

Microbiology:

Less than LOQ for all analytes.

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

Customer: Sentia Wellness

PO Box 5665

Portland Oregon 97228

United States

Product identity: Lavender Drops 250mg Lot HDTO-1408

Client/Metrc ID: .

Sample Date:

Laboratory ID: 20-005908-0002
Relinquished by: Client *See COC*

Temp: 20.3 °C

Sample Results

Potency	Method J AOA	AC 2015 V98-6 (mod)	Batch: 2004897	Ana	alyze: 6/11/20 3:55:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBC	< LOQ		%	0.0033	
CBC-A [†]	< LOQ		%	0.0033	
CBC-Total [†]	< LOQ		%	0.0061	
CBD	0.814		%	0.0033	
CBD-A	< LOQ		%	0.0033	
CBD-Total	0.814		%	0.0061	
CBDV [†]	< LOQ		%	0.0033	
CBDV-A [†]	< LOQ		%	0.0033	
CBDV-Total [†]	< LOQ		%	0.0061	
CBG [†]	< LOQ		%	0.0033	
CBG-A [†]	< LOQ		%	0.0033	
CBG-Total	< LOQ		%	0.0061	
CBL [†]	< LOQ		%	0.0033	
CBN	< LOQ		%	0.0033	
$\Delta 8\text{-THC}^{\dagger}$	< LOQ		%	0.0033	
Δ9-THC	< LOQ		%	0.0033	
THC-A	< LOQ		%	0.0033	
THC-Total	< LOQ		%	0.0061	
THCV [†]	< LOQ		%	0.0033	
THCV-A [†]	< LOQ		%	0.0033	
THCV-Total [†]	< LOQ		%	0.0061	
Total Cannabinoids [†]	0.814		%		

Potency per 1ml	Method J AOA	AC 2015 V98-6 (mod)	Batch: 200489	97	Analyze: 6/11/20 3:55:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBC per 1ml	< LOQ		mg/1ml	0.0307	
CBC-A per 1ml	< LOQ		mg/1ml	0.0307	
CBC-Total per 1ml	< LOQ		mg/1ml	0.0577	
CBD per 1ml	7.69		mg/1ml	0.0307	
CBD-A per 1ml	< LOQ		mg/1ml	0.0307	
CBD-Total per 1ml	7.69		mg/1ml	0.0577	
CBDV per 1ml	< LOQ		mg/1ml	0.0307	

Page 2 of 17

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Potency per 1ml	Method J AOAC 2	2015 V98-6 (mod)	Batch: 2004897		Analyze: 6/11/20 3:55:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBDV-A per 1ml	< LOQ		mg/1ml	0.0307	
CBDV-Total per 1ml	< LOQ		mg/1ml	0.0574	
CBG per 1ml	< LOQ		mg/1ml	0.0307	
CBG-A per 1ml	< LOQ		mg/1ml	0.0307	
CBG-Total per 1ml	< LOQ		mg/1ml	0.0574	
CBL per 1ml	< LOQ		mg/1ml	0.0307	
CBN per 1ml	< LOQ		mg/1ml	0.0307	
$\Delta 8$ -THC per 1ml	< LOQ		mg/1ml	0.0307	
$\Delta 9$ -THC per 1ml	< LOQ		mg/1ml	0.0307	
THC-A per 1ml	< LOQ		mg/1ml	0.0307	
THC-Total per 1ml	< LOQ		mg/1ml	0.0577	
THCV per 1ml	< LOQ		mg/1ml	0.0307	
THCV-A per 1ml	< LOQ		mg/1ml	0.0307	
THCV-Total per 1ml	< LOQ		mg/1ml	0.0577	
Total Cannabinoids 1ml [†]	7.69		mg/1ml		

Potency per 30ml	Method J AOA	C 2015 V98-6 (mod)	Batch: 2004897		Analyze: 6/11/20 3:55:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBC per 30ml	< LOQ		mg/30ml	0.922	
CBC-A per 30ml	< LOQ		mg/30ml	0.922	
CBC-Total per 30ml	< LOQ		mg/30ml	1.73	
CBD per 30ml	231		mg/30ml	0.922	
CBD-A per 30ml	< LOQ		mg/30ml	0.922	
CBD-Total per 30ml	231		mg/30ml	1.73	
CBDV per 30ml	< LOQ		mg/30ml	0.922	
CBDV-A per 30ml	< LOQ		mg/30ml	0.922	
CBDV-Total per 30ml	< LOQ		mg/30ml	1.72	
CBG per 30ml	< LOQ		mg/30ml	0.922	
CBG-A per 30ml	< LOQ		mg/30ml	0.922	
CBG-Total per 30ml	< LOQ		mg/30ml	1.72	
CBL per 30ml	< LOQ		mg/30ml	0.922	
CBN per 30ml	< LOQ		mg/30ml	0.922	
$\Delta 8$ -THC per 30ml	< LOQ		mg/30ml	0.922	
$\Delta 9$ -THC per 30ml	< LOQ		mg/30ml	0.922	
THC-A per 30ml	< LOQ		mg/30ml	0.922	
THC-Total per 30ml	< LOQ		mg/30ml	1.73	
THCV per 30ml	< LOQ		mg/30ml	0.922	
THCV-A per 30ml	< LOQ		mg/30ml	0.922	
THCV-Total per 30ml	< LOQ		mg/30ml	1.73	
Total Cannabinoids 30ml [†]	231		mg/30ml		

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

01/26/21 16:05 Received:

Solvents	Method	EPA5021	IA		Units µg/g Batch 2	004831	Analyz	e 06/	10/20 0	08:59 AM
Analyte	Result	Limits L	oQ :	Status Notes	Analyte	Result	Limits	LOQ	Status	Notes
1,4-Dioxane	< LOQ	380	100	pass	2-Butanol	< LOQ	5000	200	pass	
2-Ethoxyethanol	< LOQ	160	30.0	pass	2-Methylbutane	< LOQ		200		
2-Methylpentane	< LOQ		30.0		2-Propanol (IPA)	< LOQ	5000	200	pass	
2,2-Dimethylbutane	< LOQ		30.0		2,2-Dimethylpropane	< LOQ		200		
2,3-Dimethylbutane	< LOQ		30.0		3-Methylpentane	< LOQ		30.0		
Acetone	< LOQ	5000	200	pass	Acetonitrile	< LOQ	410	100	pass	
Benzene	< LOQ	2.00	1.00	pass	Butanes (sum)	< LOQ	5000	400	pass	
Cyclohexane	< LOQ	3880	200	pass	Ethanol [†]	< LOQ		200		
Ethyl acetate	< LOQ	5000	200	pass	Ethyl benzene	< LOQ		200		
Ethyl ether	< LOQ	5000	200	pass	Ethylene glycol	< LOQ	620	200	pass	
Ethylene oxide	< LOQ	50.0	30.0	pass	Hexanes (sum)	< LOQ	290	150	pass	
Isopropyl acetate	< LOQ	5000	200	pass	Isopropylbenzene	< LOQ	70.0	30.0	pass	
m,p-Xylene	< LOQ		200		Methanol	< LOQ	3000	200	pass	
Methylene chloride	< LOQ	600	200	pass	Methylpropane	< LOQ		200		
n-Butane	< LOQ		200		n-Heptane	< LOQ	5000	200	pass	
n-Hexane	< LOQ		30.0		n-Pentane	< LOQ		200		
o-Xylene	< LOQ		200		Pentanes (sum)	< LOQ	5000	600	pass	
Propane	< LOQ	5000	200	pass	Tetrahydrofuran	< LOQ	720	100	pass	
Toluene	< LOQ	890	100	pass	Total Xylenes	< LOQ		400		
Total Xylenes and Ethyl	< LOQ	2170	600	pass						

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Pesticides	Method	AOAC	2007.01 & EN	l 15662 (mod)	Units mg/kg Bate	ch 2004947	Analy	ze 06/14/20 09:14 AM
Analyte	Result	Limits	LOQ Status	Notes	Analyte	Result	Limits	LOQ Status Notes
Abamectin	< LOQ	0.50	0.250 pass		Acephate	< LOQ	0.40	0.250 pass
Acequinocyl	< LOQ	2.0	1.00 pass		Acetamiprid	< LOQ	0.20	0.100 pass
Aldicarb	< LOQ	0.40	0.200 pass		Azoxystrobin	< LOQ	0.20	0.100 pass
Bifenazate	< LOQ	0.20	0.100 pass		Bifenthrin	< LOQ	0.20	0.100 pass
Boscalid	< LOQ	0.40	0.200 pass		Carbaryl	< LOQ	0.20	0.100 pass
Carbofuran	< LOQ	0.20	0.100 pass		Chlorantraniliprole	< LOQ	0.20	0.100 pass
Chlorfenapyr	< LOQ	1.0	0.500 pass		Chlorpyrifos	< LOQ	0.20	0.100 pass
Clofentezine	< LOQ	0.20	0.100 pass		Cyfluthrin	< LOQ	1.0	0.500 pass
Cypermethrin	< LOQ	1.0	0.500 pass		Daminozide	< LOQ	1.0	0.500 pass
Diazinon	< LOQ	0.20	0.100 pass		Dichlorvos	< LOQ	1.0	0.500 pass
Dimethoate	< LOQ	0.20	0.100 pass		Ethoprophos	< LOQ	0.20	0.100 pass
Etofenprox	< LOQ	0.40	0.200 pass		Etoxazole	< LOQ	0.20	0.100 pass
Fenoxycarb	< LOQ	0.20	0.100 pass		Fenpyroximate	< LOQ	0.40	0.200 pass
Fipronil	< LOQ	0.40	0.200 pass		Flonicamid	< LOQ	1.0	0.400 pass
Fludioxonil	< LOQ	0.40	0.200 pass		Hexythiazox	< LOQ	1.0	0.400 pass
Imazalil	< LOQ	0.20	0.100 pass		Imidacloprid	< LOQ	0.40	0.200 pass
Kresoxim-methyl	< LOQ	0.40	0.200 pass		Malathion	< LOQ	0.20	0.100 pass
Metalaxyl	< LOQ	0.20	0.100 pass		Methiocarb	< LOQ	0.20	0.100 pass
Methomyl	< LOQ	0.40	0.200 pass		MGK-264	< LOQ	0.20	0.100 pass
Myclobutanil	< LOQ	0.20	0.100 pass		Naled	< LOQ	0.50	0.250 pass
Oxamyl	< LOQ	1.0	0.500 pass		Paclobutrazole	< LOQ	0.40	0.200 pass
Parathion-Methyl	< LOQ	0.20	0.200 pass		Permethrin	< LOQ	0.20	0.100 pass
Phosmet	< LOQ	0.20	0.100 pass		Piperonyl butoxide	< LOQ	2.0	1.00 pass
Prallethrin	< LOQ	0.20	0.200 pass		Propiconazole	< LOQ	0.40	0.200 pass
Propoxur	< LOQ	0.20	0.100 pass		Pyrethrin I (total)	< LOQ	1.0	0.500 pass
Pyridaben	< LOQ	0.20	0.100 pass		Spinosad	< LOQ	0.20	0.100 pass
Spiromesifen	< LOQ	0.20	0.100 pass		Spirotetramat	< LOQ	0.20	0.100 pass
Spiroxamine	< LOQ	0.40	0.200 pass		Tebuconazole	< LOQ	0.40	0.200 pass
Thiacloprid	< LOQ	0.20	0.100 pass		Thiamethoxam	< LOQ	0.20	0.100 pass
Trifloxystrobin	< LOQ	0.20	0.100 pass					

Metals								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Arsenic	< LOQ		mg/kg	0.0383	2004881	06/10/20	AOAC 2013.06 (mod.)	X
Cadmium	< LOQ		mg/kg	0.0383	2004881	06/10/20	AOAC 2013.06 (mod.)	X
Lead	< LOQ		mg/kg	0.0383	2004881	06/10/20	AOAC 2013.06 (mod.)	X
Mercury	< LOQ		mg/kg	0.0192	2004881	06/10/20	AOAC 2013.06 (mod.)	X

Nutrition								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Density	0.9452		g/ml	0.1000	2005037	06/16/20	DMA 35™	X

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

Customer: Sentia Wellness

PO Box 5665

Portland Oregon 97228

United States

Product identity: 10ml Lavender Drops, Lot# DR4PK-2, HDTO-1408

Client/Metrc ID:

Sample Date: 01/26/21

Laboratory ID: 21-000929-0002

Temp: 17.4 °C

Sample Results

Microbiology								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Aerobic Plate Count	< LOQ		cfu/g	10	2100820	01/30/21	AOAC 990.12 (Petrifilm)	X,I
E.coli	< LOQ		cfu/g	10	2100821	01/30/21	AOAC 991.14 (Petrifilm)	X,I
Total Coliforms	< LOQ		cfu/g	10	2100821	01/30/21	AOAC 991.14 (Petrifilm)	X,I
Mold (RAPID Petrifilm)	< LOQ		cfu/g	10	2100824	01/30/21	AOAC 2014.05 (RAPID)	X,I
Yeast (RAPID Petrifilm)	< LOQ		cfu/g	10	2100824	01/30/21	AOAC 2014.05 (RAPID)	X,I
Salmonella spp. by PCR	Negative		/5g		2100826	01/29/21	AOAC 2020.02	X,I

Mycotoxins								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Aflatoxin B1 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Aflatoxin B2 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Aflatoxin G1 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Aflatoxin G2 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Deoxynivalenol [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Fumonisin B1 [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Fumonisin B2 [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	
HT2-Toxin [†]	< LOQ		μg/kg	40.0	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Nivalenol [†]	< LOQ		μg/kg	400	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Ochratoxin A [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Ochratoxin B [†]	< LOQ		μg/kg	2.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
T2-Toxin [†]	< LOQ		μg/kg	20.0	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Zearalenone [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

† = Analyte not NELAP accredited.

Units of Measure

cfu/g = Colony forming units per gram μ g/kg = Micrograms per kilogram = parts per billion (ppb) /5g = Per 5 grams % wt = μ g/g divided by 10,000

Glossary of Qualifiers

I: Insufficient sample received to meet method requirements.

X: Not ORELAP accredited.

Approved Signatory

Derrick Tanner General Manager

Report Number:

21-000929/D05.R01

Report Date:

02/02/2021

ORELAP#:

OR100028

Purchase Order:

Received:

01/26/21 16:05

Hemp Products Chain of Custody Record

Revision: 0.00 Control#: CF002 Rev: 02/27/2020 Eff: 02/27/2020 ORELAP ID: **OR100028**

Sentia Wellness

Com	pany: Sentia Wellness		Analysis Requested PO Number:												
Con Stree City: MEm Ph Billing	tact: Erin Harbacek t; Sandy Location Portland State: OR Zip: ail Results: erin.harbacek@sentiawell ()	lness.com	ncy	Pesticides (OR 59)	Residual Solvents	Heavy Metals	Microbiology	Density - perclient			Proj P Custo Report Tu Sample	ect Number: roject Name: m Reporting: to State - □ M rn¬around time	METRC or Other: E: Standard Rush * Priority Rush * *Ask for availability		
Lab ID	Client Sample Identification	Date	Potency	Pesti	Resid	Heav	Micr	Ž			Sample Type †	Report units (potency)	Serving size (edibles)	Comments/Metrc ID	
1	Unflavored Drops 250mg		✓	✓	✓	✓	✓	/			Т	%		Drops reporting units: %, mg/g, mg/container	
	Lot: HDTO-1344							L .						reporting units: %, mg/30mL	
7	Lavender Drops 250mg		✓	✓	√	✓	√	/			Т	%		reporting units: %, mg/some	
7	Lot: HDTO-1408 Peppermint Drops 250mg		1	1	1	1	1	1			Т	%		Micro: APC, Y&M, Ecoli/coliform	
)	Lot: HDTO-1062		'	· ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	V	V			-	70		Salmonella spp	
4	Lemon Ginger Drops 250mg		✓	√	√	✓	√	1			Т	%			
	LOT: HDTO-1063														
	Relinquished By: Date	Time			Receiv	ved by:			Date	Time			Lab Use (Only:	
d	lip She 49	1:15PM	(3)				617	1515	Sample	in good conditi	ion:	or □ Client drop off Femp (°C): 2 ○ · 3	

† - Sample type codes: Topicals (L); Edibles (E); Tincture (T); Bath Salts (S); Beverages (B)

Report unit options: %; mg/g; mg/serving

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms.

12423 NE Whitaker Way Portland, OR 97230 P: (503) 254-1794 | Fax: (503) 254-1452 info@columbialaboratories.com Page _____of___www.columbialaboratories.com

Report Number:

21-000929/D05.R01

Report Date:

02/02/2021

ORELAP#:

OR100028

Purchase Order:

Received:

01/26/21 16:05

Hemp Products Chain of Custody Record

Revision: 0.00 Control#: CF002 Rev: 02/27/2020 Eff: 02/27/2020

ORELAP ID: OR100028

Com	pany: Sentia Wellness					An	alysis F	equeste	d			PO Number:		
Con Stree City: S En	tact: Erin Harbacek tt: Sandy Location Portland State: OR 2 ail Results: erin.harbacek@sentiav tt	vellness.com		Pesticides (OR 59)	Residual Solvents	Heavy Metals	Microbiology				Proj Pr Custor Report Tur	ect Number: _ roject Name: _ m Reporting: _ to State - □ M	ETRC or □ Ot e: ☑ Standard *Ask for ava	her: Rush * Priority Rush *
Lab ID	Client Sample Identification	Date	Potency	Pestici	Residu	Heavy	Microk				Sample Type †	Report units (potency)	Serving size (edibles)	Comments/Metrc ID
1	83mg Unflavored Drops WIP848, HDTO-1344	1/26/21					√				Т			Micro: APC, Y&M, Ecoli/coliform Salmonella spp, Mycotoxins
2	83mg Lavender Drops	1/26/21					√				Т			Will need to combine all 4 WIP lot reports with their respective
3	WIP846, HDTO-1408 83mg Lemon Ginger Drops	1/26/21					√				Т			HDTO lot reports. I will clarify later on.
4	WIP847, HDTO-1063 83mg Peppermint Drops	1/26/21					√		+		Т			_
,	WIP845, HDTO-1062													
	Relinquished By: Da	ate Time			Receiv	ved by:			Date	Time			Lab Use (Only:
	lle 1/2	3:53	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		:=)	J	В	1	26	16:05	Evidence Sample	e of cooling: \Box	yes No - Ton;	or Client drop off Temp (°C): 17.4

†- <u>Sample type codes:</u> Topicals (L); Edibles (E); Tincture (T); Bath Salts (S); Beverages (B)

Report unit options: %; mg/g; mg/serving

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms.

12423 NE Whitaker Way

P: (503) 254-1794 | Fax: (503) 254-1452

Page | of 2 www.columbialaboratories.com

Report Number:

21-000929/D05.R01

Report Date:

02/02/2021

ORELAP#:

OR100028

Purchase Order:

Received:

01/26/21 16:05

Hemp Products Chain of Custody Record

Revision: 0.00 Control#: CF002 Rev: 02/27/2020 Eff: 02/27/2020

ORELAP ID: **OR100028**

PRICING AND CHARGES

Prices to be charged for work performed for CUSTOMER are those currently published in the Columbia Laboratories (herein referred to as "the LAB". Standard pricing applies unless otherwise agreed in writing by the CUSTOMER and the LAB. CUSTOMER must notify the LAB of price quotation at the time of the transfer of sample(s) to the LAB. Any cancellation of testing requirements will result in charges being assessed on all testing completed prior to the notice of cancellation. Unless otherwise agreed upon, samples containing hazardous material will be shipped back to client at their expense, or disposed of at a certain fee, waste category dependent. New accounts are accepted with full payment in advance by cash, check, Visa or Mastercard. A credit line may be established with an approved credit application.

DELIVERY AND LIABILITY LIMITATIONS

The specific format of the goods will be defined by CUSTOMER to the LAB upon delivery of the sample(s) to the LAB. The LAB will analyze samples provided by CUSTOMER as requested by CUSTOMER in accordance with the procedures documented in the Quality Assurance Plan (QAP). Samples are retained for 30 days after receipt. If additional time is desired, then a written request is required, and an additional monthly fee will apply.

CONFIDENTIALITY

The LAB will treat all information regarding work performed for CUSTOMER as proprietary and confidential. No CUSTOMER information will be released to third persons without the written request of the CUSTOMER.

LIMITATION OF LIABILITY AND WARRANTY

The LAB gives no warranty, express or implied, or of fitness for a particular purpose, in connection with its analytical testing or reporting. Any liability of the LAB to CUSTOMER or any third party shall be limited to the cost of analysis charged to CUSTOMER.

PAST DUE ACCOUNTS

Credit line account are payable within 30 days. Accounts that are 60 days past due will incur 1½/2% per month on all past due sums until paid in full and will automatically default to cash on delivery (COD). Reports will not be released unless payment on past and current invoices are received. Customer agrees to pay the interest as a service charge and all the LAB's collection costs, including reasonable attorney fees.

EXPERT TESTIMONY AND COURT APPEARANCES

In the event CUSTOMER requires the further written opinion or testimony of any employee of the LAB, including response to a subpoena issued by CUSTOMER or any third person, CUSTOMER agrees to pay such additional fees and expenses as may be reasonably assessed by the LAB.

ALTERNATIVE DISPUTE RESOLUTION (ADR)

Any disputes arising out of this Agreement or the analytical testing or reporting by the LAB shall be settled through mediation and/or arbitration rather than litigation, and the cost of the ADR shall be borne equally by both parties.

APPLICABLE LAW

Legal matters arising from work performed by the LAB for CUSTOMER will be construed and interpreted in accordance with the laws for the state of Oregon. When sending, transferring, or submitting samples, the CUSTOMER assumes full responsibility for complying with all applicable state and federal laws

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms.

12423 NE Whitaker Way Portland, OR 97230 P: (503) 254-1794 | Fax: (503) 254-1452 info@columbialaboratories.com Page 2 of 2 www.columbialaboratories.com

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Laboratory Quality Control Results

EPA 5021						Ba	tch ID:	200483	1		
Method Blank					Laborator	y Control S	ample)			
Analyte	Result		LOQ	Notes	Result	Spike	Units	% Rec	L	imits	Notes
Propane	ND	<	200		1430	1,190	μg/g	120.2	70	- 130)
Isobutane	ND	<	200		1870	1,520	μg/g	123.0	70	- 130)
Butane	ND	<	200		1910	1,520	μg/g	125.7	70	- 130)
2,2-Dimethylpropane	ND	<	200		2330	1,910	μg/g	122.0	70	- 130	
Methanol	ND	<	200		3650	3,210	μg/g	113.7	70	- 130	
Ethylene Oxide	ND	<	30		156	117	μg/g	133.3	70	- 130	Q1
2-Methylbutane	ND	<	200		3250	3,210	μg/g	101.2	70	- 130)
Pentane	ND	<	200		3420	3,210	μg/g	106.5	70	- 130)
Ethanol	ND	<	200		3620	3,210	μg/g	112.8	70	- 130)
Ethyl Ether	ND	<	200		3410	3,230	µg/g	105.6	70	- 130	
2,2-Dimethylbutane	ND	<	30		325	326	µg/g	99.7	70	- 130	
Acetone	ND	<	200		3530	3,200	μg/g	110.3	70	- 130)
2-Propanol	ND	<	200		3680	3,210	μg/g	114.6	70	- 130)
Acetonitrile	ND	<	100		1040	972	μg/g	107.0	70	- 130)
2,3-Dimethylbutane	ND	<	30		411	332	μg/g	123.8	70	- 130)
Dichloromethane	ND	<	200		996	972	μg/g	102.5	70	- 130)
2-Methylpentane	ND	<	30		288	324	μg/g	88.9	70	- 130)
3-Methylpentane	ND	<	30		339	326	μg/g	104.0	70	- 130)
Hexane	ND	<	30		350	335	μg/g	104.5	70	- 130)
Ethyl acetate	ND	<	200		3520	3,210	µg/g	109.7	70	- 130)
2-Butanol	ND	<	200		3490	3,210	µg/g	108.7	70	- 130)
Tetrahydrofuran	ND	<	100		1010	964	µg/g	104.8	70	- 130)
Cyclohexane	ND	<	200		3290	3,200	µg/g	102.8	70	- 130)
Benzene	ND	<	1		53.7	46.1	µg/g	116.5	70	- 130	
Isopropyl Acetate	ND	<	200		3460	3,200	µg/g	108.1	70	- 130)
Heptane	ND	<	200		3460	3,210	μg/g	107.8	70	- 130)
1,4-Dioxane	ND	<	100		967	976	µg/g	99.1	70	- 130)
2-Ethoxyethanol	ND	<	30		356	340	µg/g	104.7	70	- 130)
Ethylene Glycol	ND	<	200		819	972	µg/g	84.3	70	- 130)
Toluene	ND	<	200		1010	963	µg/g	104.9	70	- 130)
Ethylbenzene	ND	<	200		1910	1,920	µg/g	99.5	70	- 130	
m,p-Xylene	ND	<	200		1870	1,950	µg/g	95.9	70	- 130)
o-Xylene	ND	<	200		1970	1,940	µg/g	101.5	70	- 130	
Cumene	ND	<	30		335	327	µg/g	102.4	70	- 130)

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Sample ID: 20-005727-0001 QC - Sample Duplicate

Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Isobutane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Butane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2,2-Dimethylpropane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Methanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30	μg/g	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Pentane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Ethyl Ether	ND	ND	200	μg/g	0.0	< 20	Acceptable	
2,2-Dimethylbutane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
Acetone	ND	ND	200	μg/g	0.0	< 20	Acceptable	
2-Propanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Acetonitrile	ND	ND	100	μg/g	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
Dichloromethane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Methylpentane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
3-Methylpentane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Hexane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Ethyl acetate	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Butanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100	µg/g	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Benzene	ND	ND	1	μg/g	0.0	< 20	Acceptable	
Isopropyl Acetate	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Heptane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100	μg/g	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Toluene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethylbenzene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
m,p-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
o-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Cumene	ND	ND	30	µg/g	0.0	< 20	Acceptable	

ND - None Detected at or above MRL

RPD - Relative Percent Difference LOQ - Limit of Quantitation

* Screening only
Q1 Quality Control result biased high. Only non detect samples reported.

μg/g- Microgram per gram or ppm mg/Kg - Milligrams per Kilogram Aw- Water Activity unit

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

Laboratory Quality Control Results

J AOAC 2015	V98-6			Bat	ch ID: 2004897		
Laboratory Co	ntrol Sample						
Analyte	Result	Spike	Units	% Rec	Limits	Evaluation	Notes
CBDV-A	0.0103	0.01	%	103	85.0 - 115	Acceptable	
CBDV	0.0102	0.01	%	102	85.0 - 115	Acceptable	
CBD-A	0.00945	0.01	%	94.5	85.0 - 115	Acceptable	
CBG-A	0.0101	0.01	%	101	85.0 - 115	Acceptable	
CBG	0.00987	0.01	%	98.7	85.0 - 115	Acceptable	
CBD	0.00897	0.01	%	89.7	85.0 - 115	Acceptable	
THCV	0.00981	0.01	%	98.1	85.0 - 115	Acceptable	
THCVA	0.0100	0.01	%	100	85.0 - 115	Acceptable	
CBN	0.00984	0.01	%	98.4	85.0 - 115	Acceptable	
THC	0.0103	0.01	%	103	85.0 - 115	Acceptable	
D8THC	0.00991	0.01	%	99.1	85.0 - 115	Acceptable	
CBL	0.0101	0.01	%	101	85.0 - 115	Acceptable	
CBC	0.0104	0.01	%	104	85.0 - 115	Acceptable	
THCA	0.00894	0.01	%	89.4	85.0 - 115	Acceptable	
CBCA	0.00993	0.01	%	99.3	85.0 - 115	Acceptable	

Method Blank

Analyte	Result	LOQ	Units	Limits	Evaluation	Notes
CBDV-A	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBDV	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBD-A	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBG-A	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBG	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBD	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCV	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCVA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBN	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
D8THC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBL	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td>·</td></loq<>	0.003	%	< 0.003	Acceptable	·
THCA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBCA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

% - Percent

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

01/26/21 16:05 Received:

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

Laboratory Quality Control Results

J AOAC 2015	V98-6				Bato	h ID: 2004897	,		
Sample Dupli	cate			Sample ID: 20-005209-0004-01					
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes	
CBDV-A	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable		
CBDV	0.0353	0.0351	0.003	%	0.806	< 20	Acceptable		
CBD-A	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable		
CBG-A	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable		
CBG	0.0688	0.0683	0.003	%	0.694	< 20	Acceptable		
CBD	3.50	3.13	0.003	%	11	< 20	Acceptable		
THCV	0.00575	0.00572	0.003	%	0.537	< 20	Acceptable		
THCVA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable		
CBN	0.00315	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable		
THC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable		
D8THC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable		
CBL	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable		
CBC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable		
THCA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable		
CBCA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable		

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

NA - Calculation Not Applicable given non-numerical results

Units of Measure:

% - Percent

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision: 1.00 Control: CFL-C21 Revised: 08/12/2019 Effective: 08/15/2019

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 15662		aborator		mg/Kg					tch ID: 200494	7
Matrix Spike/Matrix Spike								20-005857-0		
Analyte	Result	MS Res	MSD Res	Spike	RPD%	Limit		MSD % Rec	Limits	Notes
Acephate	0.000	1.038	1.030	1.000	0.8	< 30	103.8	103.0	50 - 150	
Acequinocyl	0.000	4.511	7.702	4.000	52.2	< 30	112.8	192.5	50 - 150	R,Q1
Acetamiprid	0.000	0.388	0.378	0.400	2.7	< 30	97.0	94.4	50 - 150	
Aldicarb	0.005	0.774	0.802	0.800	3.5	< 30	96.2	99.6	50 - 150	
Abamectin	0.000	1.099	1.070	1.000	2.7	< 30	109.9	107.0	50 - 150	
Azoxystrobin	0.009	0.343	0.322 0.348	0.400	6.3 12.2	< 30 < 30	83.4	78.2	50 - 150 50 - 150	
Bifenazate Bifenthrin	0.003	0.394		0.400	3.4	< 30	97.6 91.2	86.3	50 150	
Boscalid	0.023	0.388	0.401 0.803	0.400 0.800	23.7	< 30	79.1	94.5 100.3	50 - 150 50 - 150	
Carbaryl	0.000	0.833	0.803	0.400	3.5	< 30	90.5	87.3	50 - 150	
Carbofuran	0.000	0.302	0.349	0.400	1.5	< 30	75.3	76.4	50 - 150	
Chlorantraniliprol	0.000	0.301	0.403	0.400	4.1	< 30	104.7	100.5	50 - 150	
Chlorfenapyr	0.001	1.713	1.780	2.000	3.9	< 30	85.6	89.0	50 - 150	
Chlorpyrifos	0.000	0.134	0.123	0.400	8.6	< 30	33.5	30.8	50 - 150	Q
Clofentezine	0.004	0.134	0.123	0.400	9.3	< 30	99.6	90.6	50 - 150	ų ,
Cyfluthrin	0.004	1.700	1.529	2.000	10.6	< 30	85.0	76.5	30 - 150	
Cypermethrin	0.000	1.700	1.823	2.000	3.6	< 30	94.5	91.2	50 - 150	
Daminozide	0.000	1.890	1.956	2.000	2.4	< 30	95.5	97.8	30 - 150	
Diazinon	0.000	0.403	0.375	0.400	7.3	< 30	100.5	93.5	50 - 150	
Dichlorvos	0.031	1.754	1.782	2.000	1.6	< 30	86.1	87.6	50 - 150	
Dimethoat	0.000	0.400	0.404	0.400	1.1	< 30	99.9	101.0	50 - 150	
Ethoprophos	0.000	0.370	0.366	0.400	1.1	< 30	92.6	91.6	50 - 150	
Etofenprox	0.000	0.907	0.930	0.800	2.6	< 30	113.3	116.3	50 - 150	
Etoxazol	0.000	0.478	0.432	0.400	10.1	< 30	119.4	107.9	50 - 150	
Fenoxycarb	0.010	0.329	0.318	0.400	3.4	< 30	79.9	77.1	50 - 150	
Fenpyroximat	0.000	0.758	0.742	0.800	2.1	< 30	94.7	92.7	50 - 150	
Fipronil	0.019	0.547	0.566	0.800	3.4	< 30	66.0	68.4	50 - 150	
Flonicamid	0.008	0.954	0.944	1.000	1.0	< 30	94.5	93.6	50 - 150	
Fludioxonil	0.000	0.814	0.781	0.800	4.1	< 30	101.7	97.6	50 - 150	
Hexythiazox	0.010	1.195	1.193	1.000	0.1	< 30	118.4	118.3	50 - 150	
Imazalil	0.000	0.373	0.360	0.400	3.4	< 30	93.1	90.0	50 - 150	
Imidacloprid	0.008	0.914	0.844	0.800	8.0	< 30	113.3	104.6	50 - 150	
Kresoxim-Methyl	0.000	0.724	0.719	0.800	0.6	< 30	90.5	89.9	50 - 150	
Malathion	0.000	0.360	0.357	0.400	1.0	< 30	90.1	89.2	50 - 150	
Metalaxyl	0.000	0.364	0.355	0.400	2.5	< 30	91.1	88.8	50 - 150	
Methiocarb	0.000	0.349	0.294	0.400	17.0	< 30	87.3	73.6	50 - 150	
Methomyl	0.000	0.847	0.814	0.800	3.9	< 30	105.9	101.8	50 - 150	
MGK 264	0.001	0.348	0.337	0.400	3.4	< 30	86.8	83.9	50 - 150	
Myclobutanil	0.000	0.386	0.379	0.400	1.8	< 30	96.5	94.8	50 - 150	
Naled	0.000	0.820	0.791	1.000	3.6	< 30	82.0	79.1	50 - 150	
Oxamyl	0.000	2.109	2.073	2.000	1.7	< 30	105.4	103.7	50 - 150	
Paclobutrazol	0.000	0.774	0.746	0.800	3.6	< 30	96.7	93.3	50 - 150	
Parathion Methyl	0.240	0.892	0.832	0.800	6.9	< 30	81.4	74.0	30 - 150	
Permethrin	0.012	0.429	0.455	0.400	5.8	< 30	104.4	110.8	50 - 150	
Phosmet	0.003	0.388	0.410	0.400	5.5	< 30	96.2	101.7	50 - 150	
Piperonyl butoxide	0.000	2.133	2.127	2.000	0.3	< 30	106.6	106.3	50 - 150	
Prallethrin	0.099	0.246	0.266	0.400	7.6	< 30	36.9	41.8	50 - 150	Q
Propiconazole	0.000	0.798	0.772	0.800	3.3	< 30	99.8	96.5	50 - 150	
Propoxur	0.002	0.365	0.358	0.400	1.8	< 30	90.8	89.1	50 - 150	
Pyrethrins	0.030	0.413	0.453	0.413	9.4	< 30	92.7	102.5	50 - 150	
Pyridaben	0.003	0.483	0.473	0.400	2.1	< 30	120.0	117.5	50 - 150	
Spinosad	0.000	0.376	0.354	0.388	6.1	< 30	96.8	91.1	50 - 150	
Spiromesifen	0.103	0.431	0.404	0.400	6.5	< 30	82.0	75.2	50 - 150	
Spirotetramat	0.004	0.386	0.366	0.400	5.4	< 30	95.5	90.5	50 - 150	
Spiroxamine	0.000	0.763	0.787	0.800	3.0	< 30	95.4	98.3	50 - 150	
Tebuconazol	0.002	0.758	0.799	0.800	5.2	< 30	94.6	99.6	50 - 150	
Thiacloprid	0.000	0.396	0.385	0.400	2.8	< 30	99.0	96.3	50 - 150	
Thiamethoxam	0.000	0.406	0.412	0.400	1.3	< 30	101.6	102.9	50 - 150	
Trifloxystrobin	0.000	0.413	0.412	0.400	0.2	< 30	103.4	103.0	50 - 150	

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision: 1.00 Control: CFL-C21 Revised: 08/12/2019 Effective: 08/15/2019

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 1566	2	Units: mg/Kg Batch ID: 2004947 Laboratory Control Sample										
Method Blank												
Analyte	Blank Result	Blank Limits	Notes	LCS Result	LCS Spike	LCS % Rec	Limits	Notes				
Acephate	0.000	< 0.200		0.995	1.000	99.5	68.1 - 125					
Acequinocyl	0.000	< 1.000	1	4.487	4.000	112.2	79.4 - 118					
Acetamiprid	0.000	< 0.100		0.386	0.400	96.4	81.1 - 117					
Aldicarb	0.000	< 0.200		0.741	0.800	92.6	77.2 - 120					
Abamectin	0.000	< 0.288		0.839	1.000	83.9	74.3 - 125					
Azoxystrobin	0.013	< 0.100		0.354	0.400	88.4	72.7 - 126					
Bifenazate	0.000	< 0.100	1	0.382	0.400	95.4	81.5 - 116					
Bifenthrin	0.023	< 0.100		0.433	0.400	108.2	78.3 - 120					
Boscalid	0.000	< 0.100	1	0.688	0.800	86.0	75.4 - 126					
Carbaryl	0.000	< 0.100		0.383	0.400	95.7	79.9 - 119					
Carbofuran	0.000	< 0.100		0.402	0.400	100.5	81.6 - 118					
Chlorantraniliprol	0.001	< 0.100		0.397	0.400	99.2	74.8 - 127					
Chlorfenapyr	0.000	< 1.000		2.624	2.000	131.2	67.9 - 126	Q1				
Chlorpyrifos	0.024	< 0.100		0.412	0.400	103.0	73.1 - 117					
Clofentezine	0.003	< 0.100		0.404	0.400	101.0	67.1 - 125					
Cyfluthrin	0.000	< 1.000		1.741	2.000	87.0	69.8 - 130					
Cypermethrin	0.000	< 1.000		2.119	2.000	105.9	80.1 - 119					
Daminozide	0.000	< 1.000		1.912	2.000	95.6	75.0 - 120					
Diazinon	0.001	< 0.100	1	0.413	0.400	103.3	79.9 - 118					
Dichlorvos	0.029	< 0.500	1	1.970	2.000	98.5	75.9 - 117	1				
Dimethoat	0.000	< 0.100		0.398	0.400	99.5	79.6 - 118					
Ethoprophos	0.000	< 0.100	1	0.360	0.400	90.1	72.4 - 126	1				
Etofenprox	0.016	< 0.100		0.810	0.800	101.2	82.4 - 116					
toxazol	0.000	< 0.100	1	0.403	0.400	100.9	77.4 - 120					
enoxycarb	0.011	< 0.100		0.429	0.400	107.2	82.7 - 115					
enpyroximat	0.000	< 0.100	1	0.815	0.800	101.8	82.4 - 115					
Fipronil	0.023	< 0.100		0.803	0.800	100.3	78.2 - 121					
lonicamid	0.009	< 0.400	1	0.984	1.000	98.4	78.8 - 121	l —				
Fludioxonil	0.003	< 0.100	1	0.820	0.800	102.5	73.1 - 136					
Hexythiazox	0.013	< 0.400	1	1.052	1.000	105.2	81.4 - 118					
mazalil	0.000	< 0.100	1	0.433	0.400	108.2	79.0 - 126					
midacloprid	0.000	< 0.200	1	0.827	0.800	103.4	77.9 - 119	_				
Kresoxim-Methyl	0.000	< 0.100	1	0.783	0.800	97.9	75.5 - 126					
Malathion	0.001	< 0.100	1	0.400	0.400	99.9	77.6 - 120	-				
Metalaxvl	0.000	< 0.100	1	0.409	0.400	102.2	75.6 - 123	 				
Methiocarb	0.000	< 0.100	1	0.402	0.400	100.6	78.6 - 122	-				
Methomyl	0.000	< 0.200	1	0.831	0.800	103.8	73.0 - 125					
MGK 264	0.000	< 0.100	1	0.419	0.400	104.7	79.6 - 119					
Myclobutanil	0.000	< 0.100	-	0.412	0.400	102.9	83.2 - 115	-				
Valed	0.000	< 0.200	-	0.991	1.000	99.1	73.0 - 124					
Oxamyl	0.000	< 0.400	-	1.894	2.000	94.7	71.7 - 126	<u> </u>				
Paclobutrazol	0.000	< 0.400	1	0.829	0.800	103.6	81.8 - 117					
Parathion Methyl	0.000	< 0.200	-	1.018	0.800	103.6	68.2 - 127	Q1				
Permethrin	0.034	< 0.200	1	0.403	0.800	100.9	78.8 - 117	ų ų				
Phosmet	0.014	< 0.100		0.403	0.400	100.9	81.1 - 118	-				
Piperonyl butoxide	0.000	< 1.000	-	2.076	2.000	100.6						
Prallethrin	0.000	< 0.200	1	0.374	0.400	93.4	83.1 - 121 70.2 - 130					
Propiconazole	0.000	< 0.200	1	0.374	0.400	102.2	80.9 - 116	-				
Propiconazole	0.000		1	0.818	0.800	98.9		-				
Pyrethrins	0.000	< 0.100 < 0.500	1	0.396	0.400	98.9	81.7 - 115 69.9 - 130					
	0.029					117.9						
Pyridaben	0.000	< 0.100	-	0.472	0.400	117.9						
pinosad		< 0.100	1	0.415			83.1 - 125					
piromesifen	0.002	< 0.100		0.430	0.400	107.6	68.7 - 128					
pirotetramat	0.004	< 0.100		0.389	0.400	97.3	80.5 - 118					
piroxamine	0.000	< 0.100		0.828	0.800	103.5	79.3 - 119					
lebuconazol l	0.000	< 0.200		0.822	0.800	102.7	79.6 - 119					
hiacloprid	0.000	< 0.100		0.408	0.400	101.9	79.1 - 119					
Thiamethoxam	0.000	< 0.100		0.397	0.400	99.2	72.1 - 127					
Trifloxystrobin	0.000	< 0.100		0.414	0.400	103.5	79.9 - 118	1				

Report Number: 21-000929/D05.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

01/26/21 16:05 Received:

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.

Report Number: 21-000929/D04.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

This is an amended version of report# 21-000929/D04.R00. Reason: Combine results with report 20-005908/D04.R00.

Customer: Sentia Wellness

Product identity: Unflavored Drops 250mg Lot HDTO-1344

Client/Metrc ID:

Laboratory ID: 20-005908-0001

Summary

Analyte CBD	Result 0.827	Limits	Units %	Status	CBD-Total (%)	0.827%
Analyte per 1ml	Result	Limits	Units	Status	CBD-Total per 1ml	7.81 mg/1ml
CBD per 1ml Analyte per 30ml	7.81 Result	Limits	mg/1ml Units	Status	CBD-Total per 30ml	234 mg/30ml
CBD per 30ml	234		mg/30ml		THC-Total (%)	<loq< th=""></loq<>
					(Reported in millig	rams per serving)
Residual Solvents:						
All analytes passing and	less than LOQ.					

Pesticides:

Potency:

All analytes passing and less than LOQ.

Metals:

Less than LOQ for all analytes.

Customer: Sentia Wellness

Product identity: 10ml Unflavored Drops, Lot# DR4PK-2, HDTO-1344

Client/Metrc ID:

Laboratory ID: 21-000929-0001 **Sample Date:** 01/26/21

Summary

Microbiology:

Less than LOQ for all analytes.

Report Number: 21-000929/D04.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

Customer: Sentia Wellness

PO Box 5665

Portland Oregon 97228

United States

Product identity: Unflavored Drops 250mg Lot HDTO-1344

Client/Metrc ID:

Sample Date:

Laboratory ID: 20-005908-0001
Relinquished by: Client *See COC*

Temp: 20.3 °C

Sample Results

Potency	Method J AOAC 2	2015 V98-6 (mod)	Batch: 2004897		Analyze: 6/11/20 3:44:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBC	< LOQ		%	0.0032	
CBC-A [†]	< LOQ		%	0.0032	
CBC-Total [†]	< LOQ		%	0.0060	
CBD	0.827		%	0.0032	
CBD-A	< LOQ		%	0.0032	
CBD-Total	0.827		%	0.0060	
CBDV [†]	< LOQ		%	0.0032	
CBDV-A [†]	< LOQ		%	0.0032	
CBDV-Total [†]	< LOQ		%	0.0059	
CBG [†]	< LOQ		%	0.0032	
CBG-A [†]	< LOQ		%	0.0032	
CBG-Total	< LOQ		%	0.0059	
CBL [†]	< LOQ		%	0.0032	
CBN	< LOQ		%	0.0032	
$\Delta 8 ext{-THC}^\dagger$	< LOQ		%	0.0032	
Δ9-THC	< LOQ		%	0.0032	
THC-A	< LOQ		%	0.0032	
THC-Total	< LOQ		%	0.0060	
THCV [†]	< LOQ		%	0.0032	
THCV-A [†]	< LOQ		%	0.0032	
THCV-Total [†]	< LOQ		%	0.0059	
Total Cannabinoids [†]	0.827		%		

Potency per 1ml	Method J AOA	AC 2015 V98-6 (mod)	Batch: 20048	97 Ana	lyze: 6/11/20 3:44:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBC per 1ml	< LOQ		mg/1ml	0.0300	
CBC-A per 1ml	< LOQ		mg/1ml	0.0300	
CBC-Total per 1ml	< LOQ		mg/1ml	0.0564	
CBD per 1ml	7.81		mg/1ml	0.0300	
CBD-A per 1ml	< LOQ		mg/1ml	0.0300	
CBD-Total per 1ml	7.81		mg/1ml	0.0564	
CBDV per 1ml	< LOQ		mg/1ml	0.0300	

Page 2 of 17

Report Number: 21-000929/D04.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Potency per 1ml	Method J AOA	C 2015 V98-6 (mod)	Batch: 2004897		Analyze: 6/11/20 3:44:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBDV-A per 1ml	< LOQ		mg/1ml	0.0300	
CBDV-Total per 1ml	< LOQ		mg/1ml	0.0561	
CBG per 1ml	< LOQ		mg/1ml	0.0300	
CBG-A per 1ml	< LOQ		mg/1ml	0.0300	
CBG-Total per 1ml	< LOQ		mg/1ml	0.0561	
CBL per 1ml	< LOQ		mg/1ml	0.0300	
CBN per 1ml	< LOQ		mg/1ml	0.0300	
$\Delta 8$ -THC per 1ml	< LOQ		mg/1ml	0.0300	
Δ9-THC per 1ml	< LOQ		mg/1ml	0.0300	
THC-A per 1ml	< LOQ		mg/1ml	0.0300	
THC-Total per 1ml	< LOQ		mg/1ml	0.0564	
THCV per 1ml	< LOQ		mg/1ml	0.0300	
THCV-A per 1ml	< LOQ		mg/1ml	0.0300	
THCV-Total per 1ml	< LOQ		mg/1ml	0.0564	
Total Cannabinoids 1ml [†]	7.81		mg/1ml		

Potency per 30ml	Method J AOA	C 2015 V98-6 (mod)	Batch: 2004897		Analyze: 6/11/20 3:44:00 PM
Analyte	Result	Limits	Units	LOQ	Notes
CBC per 30ml	< LOQ		mg/30ml	0.900	
CBC-A per 30ml	< LOQ		mg/30ml	0.900	
CBC-Total per 30ml	< LOQ		mg/30ml	1.69	
CBD per 30ml	234		mg/30ml	0.900	
CBD-A per 30ml	< LOQ		mg/30ml	0.900	
CBD-Total per 30ml	234		mg/30ml	1.69	
CBDV per 30ml	< LOQ		mg/30ml	0.900	
CBDV-A per 30ml	< LOQ		mg/30ml	0.900	
CBDV-Total per 30ml	< LOQ		mg/30ml	1.68	
CBG per 30ml	< LOQ		mg/30ml	0.900	
CBG-A per 30ml	< LOQ		mg/30ml	0.900	
CBG-Total per 30ml	< LOQ		mg/30ml	1.68	
CBL per 30ml	< LOQ		mg/30ml	0.900	
CBN per 30ml	< LOQ		mg/30ml	0.900	
$\Delta 8$ -THC per 30ml	< LOQ		mg/30ml	0.900	
$\Delta 9$ -THC per 30ml	< LOQ		mg/30ml	0.900	
THC-A per 30ml	< LOQ		mg/30ml	0.900	
THC-Total per 30ml	< LOQ		mg/30ml	1.69	
THCV per 30ml	< LOQ		mg/30ml	0.900	
THCV-A per 30ml	< LOQ		mg/30ml	0.900	
THCV-Total per 30ml	< LOQ		mg/30ml	1.69	
Total Cannabinoids 30ml [†]	234		mg/30ml		

Report Number: 21-000929/D04.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

01/26/21 16:05 Received:

Solvents	Method	EPA5021A			Units µg/g Batch 2	004831	Analyz	e 06/10/20	08:59 AM
Analyte	Result	Limits LO	Q Status	Notes	Analyte	Result	Limits	LOQ Status	Notes
1,4-Dioxane	< LOQ	380 1	00 pass		2-Butanol	< LOQ	5000	200 pass	
2-Ethoxyethanol	< LOQ	160 30	0.0 pass		2-Methylbutane	< LOQ		200	
2-Methylpentane	< LOQ	30	0.0		2-Propanol (IPA)	< LOQ	5000	200 pass	
2,2-Dimethylbutane	< LOQ	30	0.0		2,2-Dimethylpropane	< LOQ		200	
2,3-Dimethylbutane	< LOQ	30	0.0		3-Methylpentane	< LOQ		30.0	
Acetone	< LOQ	5000 2	200 pass		Acetonitrile	< LOQ	410	100 pass	
Benzene	< LOQ	2.00 1.	.00 pass		Butanes (sum)	< LOQ	5000	400 pass	
Cyclohexane	< LOQ	3880 2	200 pass		Ethanol [†]	< LOQ		200	
Ethyl acetate	< LOQ	5000 2	200 pass		Ethyl benzene	< LOQ		200	
Ethyl ether	< LOQ	5000 2	200 pass		Ethylene glycol	< LOQ	620	200 pass	
Ethylene oxide	< LOQ	50.0 30	0.0 pass		Hexanes (sum)	< LOQ	290	150 pass	
Isopropyl acetate	< LOQ	5000 2	200 pass		Isopropylbenzene	< LOQ	70.0	30.0 pass	
m,p-Xylene	< LOQ	2	200		Methanol	< LOQ	3000	200 pass	
Methylene chloride	< LOQ	600 2	200 pass		Methylpropane	< LOQ		200	
n-Butane	< LOQ	2	200		n-Heptane	< LOQ	5000	200 pass	
n-Hexane	< LOQ	30	0.0		n-Pentane	< LOQ		200	
o-Xylene	< LOQ	2	200		Pentanes (sum)	< LOQ	5000	600 pass	
Propane	< LOQ	5000 2	200 pass		Tetrahydrofuran	< LOQ	720	100 pass	
Toluene	< LOQ	890 1	00 pass		Total Xylenes	< LOQ		400	
Total Xylenes and Ethyl	< LOQ	2170 6	00 pass						

Report Number: 21-000929/D04.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Pesticides	Method	AOAC	2007.01 & EN	l 15662 (mod)	Units mg/kg	Batch 20	04947	Analy	ze 06/14/20(09:14 AM
Analyte	Result	Limits	LOQ Status	Notes	Analyte		Result	Limits	LOQ Status	Notes
Abamectin	< LOQ	0.50	0.250 pass		Acephate		< LOQ	0.40	0.250 pass	
Acequinocyl	< LOQ	2.0	1.00 pass		Acetamiprid		< LOQ	0.20	0.100 pass	
Aldicarb	< LOQ	0.40	0.200 pass		Azoxystrobin		< LOQ	0.20	0.100 pass	
Bifenazate	< LOQ	0.20	0.100 pass		Bifenthrin		< LOQ	0.20	0.100 pass	
Boscalid	< LOQ	0.40	0.200 pass		Carbaryl		< LOQ	0.20	0.100 pass	
Carbofuran	< LOQ	0.20	0.100 pass		Chlorantranilip	role	< LOQ	0.20	0.100 pass	
Chlorfenapyr	< LOQ	1.0	0.500 pass		Chlorpyrifos		< LOQ	0.20	0.100 pass	
Clofentezine	< LOQ	0.20	0.100 pass		Cyfluthrin		< LOQ	1.0	0.500 pass	
Cypermethrin	< LOQ	1.0	0.500 pass		Daminozide		< LOQ	1.0	0.500 pass	
Diazinon	< LOQ	0.20	0.100 pass		Dichlorvos		< LOQ	1.0	0.500 pass	
Dimethoate	< LOQ	0.20	0.100 pass		Ethoprophos		< LOQ	0.20	0.100 pass	
Etofenprox	< LOQ	0.40	0.200 pass		Etoxazole		< LOQ	0.20	0.100 pass	
Fenoxycarb	< LOQ	0.20	0.100 pass		Fenpyroximate	;	< LOQ	0.40	0.200 pass	
Fipronil	< LOQ	0.40	0.200 pass		Flonicamid		< LOQ	1.0	0.400 pass	
Fludioxonil	< LOQ	0.40	0.200 pass		Hexythiazox		< LOQ	1.0	0.400 pass	
Imazalil	< LOQ	0.20	0.100 pass		Imidacloprid		< LOQ	0.40	0.200 pass	
Kresoxim-methyl	< LOQ	0.40	0.200 pass		Malathion		< LOQ	0.20	0.100 pass	
Metalaxyl	< LOQ	0.20	0.100 pass		Methiocarb		< LOQ	0.20	0.100 pass	
Methomyl	< LOQ	0.40	0.200 pass		MGK-264		< LOQ	0.20	0.100 pass	
Myclobutanil	< LOQ	0.20	0.100 pass		Naled		< LOQ	0.50	0.250 pass	
Oxamyl	< LOQ	1.0	0.500 pass		Paclobutrazole	;	< LOQ	0.40	0.200 pass	
Parathion-Methyl	< LOQ	0.20	0.200 pass		Permethrin		< LOQ	0.20	0.100 pass	
Phosmet	< LOQ	0.20	0.100 pass		Piperonyl buto	xide	< LOQ	2.0	1.00 pass	
Prallethrin	< LOQ	0.20	0.200 pass		Propiconazole		< LOQ	0.40	0.200 pass	
Propoxur	< LOQ	0.20	0.100 pass		Pyrethrin I (tota	al)	< LOQ	1.0	0.500 pass	
Pyridaben	< LOQ	0.20	0.100 pass		Spinosad		< LOQ	0.20	0.100 pass	
Spiromesifen	< LOQ	0.20	0.100 pass		Spirotetramat		< LOQ	0.20	0.100 pass	
Spiroxamine	< LOQ	0.40	0.200 pass		Tebuconazole		< LOQ	0.40	0.200 pass	
Thiacloprid	< LOQ	0.20	0.100 pass		Thiamethoxam	1	< LOQ	0.20	0.100 pass	
Trifloxystrobin	< LOQ	0.20	0.100 pass							

Metals								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Arsenic	< LOQ		mg/kg	0.0373	2004881	06/10/20	AOAC 2013.06 (mod.)	X
Cadmium	< LOQ		mg/kg	0.0373	2004881	06/10/20	AOAC 2013.06 (mod.)	X
Lead	< LOQ		mg/kg	0.0373	2004881	06/10/20	AOAC 2013.06 (mod.)	X
Mercury	< LOQ		mg/kg	0.0187	2004881	06/10/20	AOAC 2013.06 (mod.)	X

Nutrition								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Density	0.9446		g/ml	0.1000	2005037	06/16/20	DMA 35™	X

Report Number: 21-000929/D04.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

Customer: Sentia Wellness

PO Box 5665

Portland Oregon 97228

United States

Product identity: 10ml Unflavored Drops, Lot# DR4PK-2, HDTO-1344

Client/Metrc ID:

Sample Date: 01/26/21

Laboratory ID: 21-000929-0001

Temp: 17.4 °C

Sample Results

Microbiology								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Aerobic Plate Count	< LOQ		cfu/g	10	2100820	01/30/21	AOAC 990.12 (Petrifilm)	X,I
E.coli	< LOQ		cfu/g	10	2100821	01/30/21	AOAC 991.14 (Petrifilm)	X,I
Total Coliforms	< LOQ		cfu/g	10	2100821	01/30/21	AOAC 991.14 (Petrifilm)	X,I
Mold (RAPID Petrifilm)	< LOQ		cfu/g	10	2100824	01/30/21	AOAC 2014.05 (RAPID)	X,I
Yeast (RAPID Petrifilm)	< LOQ		cfu/g	10	2100824	01/30/21	AOAC 2014.05 (RAPID)	X,I
Salmonella spp. by PCR	Negative		/5g		2100826	01/29/21	AOAC 2020.02	X,I

Mycotoxins								
Analyte	Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
Aflatoxin B1 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Aflatoxin B2 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Aflatoxin G1 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Aflatoxin G2 [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Deoxynivalenol [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Fumonisin B1 [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Fumonisin B2 [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	
HT2-Toxin [†]	< LOQ		μg/kg	40.0	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Nivalenol [†]	< LOQ		μg/kg	400	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Ochratoxin A [†]	< LOQ		μg/kg	5.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Ochratoxin B [†]	< LOQ		μg/kg	2.00	2100844	01/28/21	AOAC 2007.01 & EN 15662	
T2-Toxin [†]	< LOQ		μg/kg	20.0	2100844	01/28/21	AOAC 2007.01 & EN 15662	
Zearalenone [†]	< LOQ		μg/kg	200	2100844	01/28/21	AOAC 2007.01 & EN 15662	

Report Number: 21-000929/D04.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

† = Analyte not NELAP accredited.

Units of Measure

cfu/g = Colony forming units per gram μ g/kg = Micrograms per kilogram = parts per billion (ppb) /5g = Per 5 grams % wt = μ g/g divided by 10,000

Glossary of Qualifiers

I: Insufficient sample received to meet method requirements.

X: Not ORELAP accredited.

Approved Signatory

Derrick Tanner General Manager

Report Number:

21-000929/D04.R01

Report Date:

02/02/2021

ORELAP#:

OR100028

Purchase Order:

Received:

01/26/21 16:05

Hemp Products Chain of Custody Record

Revision: 0.00 Control#: CF002 Rev: 02/27/2020 Eff: 02/27/2020

ORELAP ID: OR100028

Com	pany: Sentia Wellness					An	alysis F	equested				PO Number:		
Con Stree City:	act: Erin Harbacek tt: Sandy Location Portland State: OR Zi ail Results: erin.harbacek@sentiaw tt Px Results: (g (if different):	rellness.com	k	Pesticides (OR 59)	Residual Solvents	Heavy Metals	Microbiology				Proje Pr Custon Report Tur	ect Number: oject Name: n Reporting: to State - □ M	ETRC or □ Ot e: ☑ Standard *Ask for ava	her: Rush * Priority Rush * iilability
Lab	Client Sample Identification	Date	Potency	Pestici	Residu	Heavy	Microk	-			Sample Type †	Report units (potency)	Serving size (edibles)	Comments/Metrc ID
1	83mg Unflavored Drops WIP848, HDTO-1344	1/26/21					√				Т	(potency)	(carbics)	Micro: APC, Y&M, Ecoli/coliform Salmonella spp, Mycotoxins
2	83mg Lavender Drops WIP846, HDTO-1408	1/26/21					√				Т			Will need to combine all 4 WIP lot reports with their respective HDTO lot reports. I will clarify
3	83mg Lemon Ginger Drops	1/26/21					1				Т			later on.
4	WIP847, HDTO-1063 83mg Peppermint Drops	1/26/21					√				Т			-
	WIP845, HDTO-1062								-					-
	Relinquished By: Da	te Time			Receiv	ved by:		Date		Time			Lab Use (Only:
(Up J2 1/21	421 3:53				5	В	1/20	P	16:05	Evidence Sample i Cash	e of cooling: \square n good conditi	yes	or PrClient drop off Femp (°C): 17.4

† - Sample type codes: Topicals (L); Edibles (E); Tincture (T); Bath Salts (S); Beverages (B)

Report unit options: %; mg/g; mg/serving

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms.

12423 NE Whitaker Way

P: (503) 254-1794 | Fax: (503) 254-1452

Page _____ of __2 www.columbialaboratories.com

Report Number: 2

21-000929/D04.R01

Report Date:

02/02/2021

ORELAP#:

OR100028

Purchase Order: Received:

01/26/21 16:05

Hemp Products Chain of Custody Record

Revision: 0.00 Control#: CF002 Rev: 02/27/2020 Eff: 02/27/2020

ORELAP ID: OR100028

PRICING AND CHARGES

Prices to be charged for work performed for CUSTOMER are those currently published in the Columbia Laboratories (herein referred to as "the LAB". Standard pricing applies unless otherwise agreed in writing by the CUSTOMER and the LAB. CUSTOMER must notify the LAB of price quotation at the time of the transfer of sample(s) to the LAB. Any cancellation of testing requirements will result in charges being assessed on all testing completed prior to the notice of cancellation. Unless otherwise agreed upon, samples containing hazardous material will be shipped back to client at their expense, or disposed of at a certain fee, waste category dependent. New accounts are accepted with full payment in advance by cash, check, Visa or Mastercard. A credit line may be established with an approved credit application.

DELIVERY AND LIABILITY LIMITATIONS

The specific format of the goods will be defined by CUSTOMER to the LAB upon delivery of the sample(s) to the LAB. The LAB will analyze samples provided by CUSTOMER as requested by CUSTOMER in accordance with the procedures documented in the Quality Assurance Plan (QAP). Samples are retained for 30 days after receipt. If additional time is desired, then a written request is required, and an additional monthly fee will apply.

CONFIDENTIALITY

The LAB will treat all information regarding work performed for CUSTOMER as proprietary and confidential. No CUSTOMER information will be released to third persons without the written request of the CUSTOMER.

LIMITATION OF LIABILITY AND WARRANTY

The LAB gives no warranty, express or implied, or of fitness for a particular purpose, in connection with its analytical testing or reporting. Any liability of the LAB to CUSTOMER or any third party shall be limited to the cost of analysis charged to CUSTOMER.

PAST DUE ACCOUNTS

Credit line account are payable within 30 days. Accounts that are 60 days past due will incur 1½/2% per month on all past due sums until paid in full and will automatically default to cash on delivery (COD). Reports will not be released unless payment on past and current invoices are received. Customer agrees to pay the interest as a service charge and all the LAB's collection costs, including reasonable attorney fees.

EXPERT TESTIMONY AND COURT APPEARANCES

In the event CUSTOMER requires the further written opinion or testimony of any employee of the LAB, including response to a subpoena issued by CUSTOMER or any third person, CUSTOMER agrees to pay such additional fees and expenses as may be reasonably assessed by the LAB.

ALTERNATIVE DISPUTE RESOLUTION (ADR)

Any disputes arising out of this Agreement or the analytical testing or reporting by the LAB shall be settled through mediation and/or arbitration rather than litigation, and the cost of the ADR shall be borne equally by both parties.

APPLICABLE LAW

Legal matters arising from work performed by the LAB for CUSTOMER will be construed and interpreted in accordance with the laws for the state of Oregon. When sending, transferring, or submitting samples, the CUSTOMER assumes full responsibility for complying with all applicable state and federal laws

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms.

12423 NE Whitaker Way Portland, OR 97230 P: (503) 254-1794 | Fax: (503) 254-1452 info@columbialaboratories.com

Page 2 of 2 www.columbialaboratories.com

Report Number:

21-000929/D04.R01

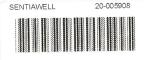
Report Date:

02/02/2021

ORELAP#:

OR100028

Purchase Order:


Received:

01/26/21 16:05

Hemp Products Chain of Custody Record

Revision: 0.00 Control#: CF002 Rev: 02/27/2020 Eff: 02/27/2020 ORELAP ID: **OR100028**

Analysis Requested Company: Sentia Wellness PO Number: Contact: Erin Harbacek Street: Sandy Location Project Name: per client emai Custom Reporting: _ City: Portland ___ State: OR Zip: 97230 Report to State - ☐ METRC or ☐ Other:_ ☑ Email Results: erin.harbacek@sentiawellness.com Pesticides (OR 59) Turn¬around time:

Standard □ Rush * □ Priority Rush * Residual Solvents Ph: (___)_ ____ Fx Results: (___)_ *Ask for availability Heavy Metals Density Billing (if different): Sampled by: Lab Sample Report units Serving size Client Sample Identification ID (edibles) Comments/Metrc ID Type † (potency) √ √ ✓ Drops reporting units: %, mg/g, √ Unflavored Drops 250mg % Lot: HDTO-1344 reporting units: %, mg/30mL Lavender Drops 250mg ✓ √ ✓ т Lot: HDTO-1408 Micro: APC, Y&M, Ecoli/coliform, Peppermint Drops 250mg √ ✓ 1 ✓ Salmonella spp Lot: HDTO-1062 Lemon Ginger Drops 250mg √ LOT: HDTO-1063 Relinquished By: Date Time Received by: Date Time Lab Use Only: or \square Client drop off 9 ☐ Shipped Via: 1:15 PM 1515 6/1 Evidence of cooling: ☐ yes | ☐ No - Temp (°C): ___ Sample in good condition: \square yes $|\square$ No $_$ ☐ Cash | ☐ Check | ☐ CC | ☐ Net: _ Prelog storage: _

† - Sample type codes: Topicals (L); Edibles (E); Tincture (T); Bath Salts (S); Beverages (B)

Report unit options: %; mg/g; mg/serving

Samples submitted to CL with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms.

12423 NE Whitaker Way Portland, OR 97230 P: (503) 254-1794 | Fax: (503) 254-1452 info@columbialaboratories.com Page _____of___www.columbialaboratories.com

Report Number: 21-000929/D04.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Laboratory Quality Control Results

EPA 5021	Ldi	Joiall	., y Qu	unty COII	troi kesuit		tch ID:	200483	31		
Method Blank					Laborato	ry Control S					
Analyte	Result		LOQ	Notes	Result	Spike	Units	% Rec	Lin	nits	Notes
Propane	ND	<	200		1430	1,190	µg/g	120.2	70 -	130	
Isobutane	ND	<	200		1870	1,520	µg/g	123.0	70 -	130	
Butane	ND	<	200		1910	1,520	µg/g	125.7	70 -	130	
2,2-Dimethylpropane	ND	<	200		2330	1,910	µg/g	122.0	70 -	130	
Methanol	ND	<	200		3650	3,210	µg/g	113.7	70 -	130	
Ethylene Oxide	ND	<	30		156	117	μg/g	133.3	70 -	130	Q1
2-Methylbutane	ND	<	200		3250	3,210	μg/g	101.2	70 -	130	
Pentane	ND	<	200		3420	3,210	μg/g	106.5	70 -	130	
Ethanol	ND	<	200		3620	3,210	μg/g	112.8	70 -	130	
Ethyl Ether	ND	<	200		3410	3,230	μg/g	105.6	70 -	130	
2,2-Dimethylbutane	ND	<	30		325	326	μg/g	99.7	70 -	130	
Acetone	ND	<	200		3530	3,200	μg/g	110.3	70 -	130	
2-Propanol	ND	<	200		3680	3,210	μg/g	114.6	70 -	130	
Acetonitrile	ND	<	100		1040	972	μg/g	107.0	70 -	130	
2,3-Dimethylbutane	ND	<	30		411	332	μg/g	123.8	70 -	130	
Dichloromethane	ND	<	200		996	972	μg/g	102.5	70 -	130	
2-Methylpentane	ND	٧	30		288	324	μg/g	88.9	70 -	130	
3-Methylpentane	ND	٧	30		339	326	μg/g	104.0	70 -	130	
Hexane	ND	<	30		350	335	µg/g	104.5	70 -	130	
Ethyl acetate	ND	<	200		3520	3,210	µg/g	109.7	70 -	130	
2-Butanol	ND	<	200		3490	3,210	µg/g	108.7	70 -	130	
Tetrahydrofuran	ND	<	100		1010	964	µg/g	104.8	70 -	130	
Cyclohexane	ND	٧	200		3290	3,200	μg/g	102.8	70 -	130	
Benzene	ND	<	1		53.7	46.1	μg/g	116.5	70 -	130	
Isopropyl Acetate	ND	٧	200		3460	3,200	µg/g	108.1	70 -	130	
Heptane	ND	٧	200		3460	3,210	μg/g	107.8	70 -	130	
1,4-Dioxane	ND	٧	100		967	976	μg/g	99.1	70 -	130	
2-Ethoxyethanol	ND	٧	30		356	340	µg/g	104.7	70 -	130	
Ethylene Glycol	ND	٧	200		819	972	µg/g	84.3	70 -	130	
Toluene	ND	٧	200		1010	963	µg/g	104.9	70 -	130	
Ethylbenzene	ND	٧	200		1910	1,920	µg/g	99.5	70 -	130	
m,p-Xylene	ND	<	200		1870	1,950	µg/g	95.9	70 -	130	
o-Xylene	ND	٧	200		1970	1,940	µg/g	101.5	70 -	130	
Cumene	ND	<	30		335	327	μg/g	102.4	70 -	130	

Report Number: 21-000929/D04.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Sample ID: 20-005727-0001 QC - Sample Duplicate

Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Isobutane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Butane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2,2-Dimethylpropane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Methanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30	μg/g	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Pentane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Ethyl Ether	ND	ND	200	μg/g	0.0	< 20	Acceptable	
2,2-Dimethylbutane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
Acetone	ND	ND	200	μg/g	0.0	< 20	Acceptable	
2-Propanol	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Acetonitrile	ND	ND	100	μg/g	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND	ND	30	μg/g	0.0	< 20	Acceptable	
Dichloromethane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Methylpentane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
3-Methylpentane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Hexane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Ethyl acetate	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Butanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100	µg/g	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Benzene	ND	ND	1	μg/g	0.0	< 20	Acceptable	
Isopropyl Acetate	ND	ND	200	μg/g	0.0	< 20	Acceptable	
Heptane	ND	ND	200	μg/g	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100	μg/g	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Toluene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethylbenzene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
m,p-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
o-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Cumene	ND	ND	30	µg/g	0.0	< 20	Acceptable	

ND - None Detected at or above MRL

RPD - Relative Percent Difference LOQ - Limit of Quantitation

* Screening only
Q1 Quality Control result biased high. Only non detect samples reported.

μg/g- Microgram per gram or ppm mg/Kg - Milligrams per Kilogram Aw- Water Activity unit

Report Number: 21-000929/D04.R01

02/02/2021 Report Date: ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

Laboratory Quality Control Results

J AOAC 2015	5 V98-6			Bate	ch ID: 2004897		
Laboratory C	Control Sample						
Analyte	Result	Spike	Units	% Rec	Limits	Evaluation	Notes
CBDV-A	0.0103	0.01	%	103	85.0 - 115	Acceptable	
CBDV	0.0102	0.01	%	102	85.0 - 115	Acceptable	
CBD-A	0.00945	0.01	%	94.5	85.0 - 115	Acceptable	
CBG-A	0.0101	0.01	%	101	85.0 - 115	Acceptable	
CBG	0.00987	0.01	%	98.7	85.0 - 115	Acceptable	
CBD	0.00897	0.01	%	89.7	85.0 - 115	Acceptable	
THCV	0.00981	0.01	%	98.1	85.0 - 115	Acceptable	
THCVA	0.0100	0.01	%	100	85.0 - 115	Acceptable	
CBN	0.00984	0.01	%	98.4	85.0 - 115	Acceptable	
THC	0.0103	0.01	%	103	85.0 - 115	Acceptable	
D8THC	0.00991	0.01	%	99.1	85.0 - 115	Acceptable	
CBL	0.0101	0.01	%	101	85.0 - 115	Acceptable	
CBC	0.0104	0.01	%	104	85.0 - 115	Acceptable	
THCA	0.00894	0.01	%	89.4	85.0 - 115	Acceptable	
CBCA	0.00993	0.01	%	99.3	85.0 - 115	Acceptable	

Method Blank

Analyte	Result	LOQ	Units	Limits	Evaluation	Notes
CBDV-A	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBDV	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBD-A	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBG-A	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBG	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBD	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCV	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THCVA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBN	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
THC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
D8THC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBL	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBC	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td>·</td></loq<>	0.003	%	< 0.003	Acceptable	·
THCA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	
CBCA	<loq< td=""><td>0.003</td><td>%</td><td>< 0.003</td><td>Acceptable</td><td></td></loq<>	0.003	%	< 0.003	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

Units of Measure:

% - Percent

Report Number: 21-000929/D04.R01

Report Date: 02/02/2021 **ORELAP#:** OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

Laboratory Quality Control Results

J AOAC 2015	V98-6				Bato	ch ID: 2004897		
Sample Dupl	icate				Samı	ole ID: 20-00520	9-0004-01	
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes
CBDV-A	<loq< td=""><td><l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<></td></loq<>	<l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<>	0.003	%	NA	< 20	Acceptable	
CBDV	0.0353	0.0351	0.003	%	0.806	< 20	Acceptable	
CBD-A	<loq< td=""><td><l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<></td></loq<>	<l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<>	0.003	%	NA	< 20	Acceptable	
CBG-A	<loq< td=""><td><l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<></td></loq<>	<l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<>	0.003	%	NA	< 20	Acceptable	
CBG	0.0688	0.0683	0.003	%	0.694	< 20	Acceptable	
CBD	3.50	3.13	0.003	%	11	< 20	Acceptable	
THCV	0.00575	0.00572	0.003	%	0.537	< 20	Acceptable	
THCVA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBN	0.00315	<l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<>	0.003	%	NA	< 20	Acceptable	
THC	<loq< td=""><td><l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<></td></loq<>	<l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<>	0.003	%	NA	< 20	Acceptable	
D8THC	<loq< td=""><td><l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<></td></loq<>	<l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<>	0.003	%	NA	< 20	Acceptable	
CBL	<loq< td=""><td><l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<></td></loq<>	<l0q< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></l0q<>	0.003	%	NA	< 20	Acceptable	
CBC	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
THCA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	
CBCA	<loq< td=""><td><loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.003</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.003	%	NA	< 20	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation

NA - Calculation Not Applicable given non-numerical results

Units of Measure:

% - Percent

Report Number: 21-000929/D04.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision: 1.00 Control: CFL-C21 Revised: 08/12/2019 Effective: 08/15/2019

Laboratory Pesticide Quality Control Results

AOAC 2007.1 & EN 15662	ė.		Units:		-				tch ID: 200494	7
Matrix Spike/Matrix Spike	e Duplicate Reco			11.000/00		100.000		20-005857-0		
Analyte	Result	MS Res	MSD Res	Spike	RPD%	Limit		MSD % Rec	Limits	Notes
Acephate	0.000	1.038	1.030	1.000	0.8	< 30	103.8	103.0	50 - 150	
Acequinocyl	0.000	4.511	7.702	4.000	52.2	< 30	112.8	192.5	50 - 150	R,Q1
Acetamiprid	0.000	0.388	0.378	0.400	2.7	< 30	97.0	94.4	50 - 150	
Aldicarb	0.005	0.774	0.802	0.800	3.5	< 30	96.2	99.6	50 - 150	
Abamectin	0.000	1.099	1.070	1.000	2.7	< 30	109.9	107.0	50 - 150	
Azoxystrobin	0.009	0.343	0.322	0.400	6.3	< 30	83.4	78.2	50 - 150	
Bifenazate	0.003	0.394	0.348	0.400	12.2	< 30	97.6	86.3	50 - 150	
Bifenthrin	0.023	0.388	0.401	0.400	3.4	< 30	91.2	94.5	50 - 150	
Boscalid	0.000	0.633	0.803	0.800	23.7	< 30	79.1	100.3	50 - 150	
Carbaryl	0.000	0.362	0.349	0.400	3.5	< 30	90.5	87.3	50 - 150	
Carbofuran	0.000	0.301	0.306	0.400	1.5	< 30	75.3	76.4	50 - 150	
Chlorantraniliprol	0.001	0.419	0.403	0.400	4.1	< 30	104.7	100.5	50 - 150	3
Chlorfenapyr	0.000	1.713	1.780	2.000	3.9	< 30	85.6	89.0	50 - 150	
Chlorpyrifos	0.000	0.134	0.123	0.400	8.6	< 30	33.5	30.8	50 - 150	Q
Clofentezine	0.004	0.402	0.366	0.400	9.3	< 30	99.6	90.6	50 - 150	
Cyfluthrin	0.000	1.700	1.529	2.000	10.6	< 30	85.0	76.5	30 - 150	
Cypermethrin	0.000	1.890	1.823	2.000	3.6	< 30	94.5	91.2	50 - 150	
Daminozide	0.000	1.910	1.956	2.000	2.4	< 30	95.5	97.8	30 - 150	
Diazinon	0.001	0.403	0.375	0.400	7.3	< 30	100.5	93.5	50 - 150	
Dichlorvos	0.031	1.754	1.782	2.000	1.6	< 30	86.1	87.6	50 - 150	
Dimethoat	0.000	0.400	0.404	0.400	1.1	< 30	99.9	101.0	50 - 150	
Ethoprophos	0.000	0.370	0.366	0.400	1.1	< 30	92.6	91.6	50 - 150	
Etofenprox	0.000	0.907	0.930	0.800	2.6	< 30	113.3	116.3	50 - 150	
Etoxazol	0.000	0.478	0.432	0.400	10.1	< 30	119.4	107.9	50 - 150	
Fenoxycarb	0.010	0.329	0.318	0.400	3.4	< 30	79.9	77.1	50 - 150	
Fenpyroximat	0.000	0.758	0.742	0.800	2.1	< 30	94.7	92.7	50 - 150	
Fipronil	0.019	0.547	0.566	0.800	3.4	< 30	66.0	68.4	50 - 150	
Flonicamid	0.008	0.954	0.944	1.000	1.0	< 30	94.5	93.6	50 - 150	
Fludioxonil	0.000	0.814	0.781	0.800	4.1	< 30	101.7	97.6	50 - 150	
Hexythiazox	0.010	1.195	1.193	1.000	0.1	< 30	118.4	118.3	50 - 150	
Imazalil	0.000	0.373	0.360	0.400	3.4	< 30	93.1	90.0	50 - 150	
Imidacloprid	0.008	0.914	0.844	0.800	8.0	< 30	113.3	104.6	50 - 150	
Kresoxim-Methyl	0.000	0.724	0.719	0.800	0.6	< 30	90.5	89.9	50 - 150	
Malathion	0.000	0.360	0.357	0.400	1.0	< 30	90.1	89.2	50 - 150	
Metalaxyl	0.000	0.364	0.355	0.400	2.5	< 30	91.1	88.8	50 - 150	
Methiocarb	0.000	0.349	0.294	0.400	17.0	< 30	87.3	73.6	50 - 150	
Methomyl	0.000	0.847	0.814	0.800	3.9	< 30	105.9	101.8	50 - 150	
MGK 264	0.001	0.348	0.337	0.400	3.4	< 30	86.8	83.9	50 - 150	
Myclobutanil	0.000	0.386	0.379	0.400	1.8	< 30	96.5	94.8	50 - 150	
Naled	0.000	0.820	0.791	1.000	3.6	< 30	82.0	79.1	50 - 150	
Oxamyl	0.000	2.109	2.073	2.000	1.7	< 30	105.4	103.7	50 - 150	
Paclobutrazol	0.000	0.774	0.746	0.800	3.6	< 30	96.7	93.3	50 - 150	
Parathion Methyl	0.240	0.892	0.832	0.800	6.9	< 30	81.4	74.0	30 - 150	
Permethrin	0.012	0.429	0.455	0.400	5.8	< 30	104.4	110.8	50 - 150	
Phosmet	0.003	0.388	0.410	0.400	5.5	< 30	96.2	101.7	50 - 150	
Piperonyl butoxide	0.000	2.133	2.127	2.000	0.3	< 30	106.6	106.3	50 - 150	
Prallethrin	0.099	0.246	0.266	0.400	7.6	< 30	36.9	41.8	50 - 150	Q
Propiconazole	0.000	0.798	0.772	0.800	3.3	< 30	99.8	96.5	50 - 150	
Propoxur	0.002	0.365	0.358	0.400	1.8	< 30	90.8	89.1	50 - 150	
Pyrethrins	0.030	0.413	0.453	0.413	9.4	< 30	92.7	102.5	50 - 150	
Pyridaben	0.003	0.483	0.473	0.400	2.1	< 30	120.0	117.5	50 - 150	
Spinosad	0.000	0.376	0.354	0.388	6.1	< 30	96.8	91.1	50 - 150	
Spiromesifen	0.103	0.431	0.404	0.400	6.5	< 30	82.0	75.2	50 - 150	
Spirotetramat	0.004	0.386	0.366	0.400	5.4	< 30	95.5	90.5	50 - 150	
Spiroxamine	0.000	0.763	0.787	0.800	3.0	< 30	95.4	98.3	50 - 150	l .
Геbuconazol	0.002	0.758	0.799	0.800	5.2	< 30	94.6	99.6	50 - 150	
Thiacloprid	0.000	0.396	0.385	0.400	2.8	< 30	99.0	96.3	50 - 150	
Thiamethoxam	0.000	0.406	0.412	0.400	1.3	< 30	101.6	102.9	50 - 150	
Trifloxystrobin	0.000	0.413	0.412	0.400	0.2	< 30	103.4	103.0	50 - 150	

Report Number: 21-000929/D04.R01

Report Date: 02/02/2021 ORELAP#: OR100028

Purchase Order:

Received: 01/26/21 16:05

Revision: 1.00 Control: CFL-C21 Revised: 08/12/2019 Effective: 08/15/2019

Laboratory Pesticide Quality Control Results

Analyte	Units: mg/Kg Batch ID: 2004947 Laboratory Control Sample			
Acephate 0.000 < 0.200	Notes			
Acetamiprid 0.000 < 1.000				
Acetamiprid 0.000 < 0.100 0.386 0.400 95.6 81.1 - 7.2 - 1.2 Abamectin 0.000 < 0.200 0.741 0.800 92.6 77.2 - 2. Abamectin 0.000 < 0.288 0.839 1.000 83.9 74.3 - 3. Abamectin 0.000 < 0.100 0.354 0.400 88.4 72.7 - 2. Abamectin 0.000 < 0.100 0.354 0.400 98.4 81.5 - 3. 816enthrin 0.023 < 0.100 0.433 0.400 198.2 78.3 - 3. 86scalid 0.000 < 0.100 0.688 0.800 86.0 75.4 - 3. 9. 2.624 0.000 95.7 79.9 - 3. 9. 2.624 0.000 95.7 79.9 - 3. 8.6 0.75.4 - 3. 8.6 0.75.4 - 3. 8.6 0.75.4 - 3. 9. 2. 74.8 - 3. 9. 2. 74.8 - 3. 1.00 9. 9.	0.010			
Aldicarb	7			
Abamectin 0.000 < 0.288 0.839 1.000 83.9 74.3 - 1.2	0			
Aroxystrobin				
Bifenazate				
Bifenthrin 0.023 < 0.100 0.433 0.400 108.2 78.3 - 1 Boscalid 0.000 < 0.100				
Boscalid				
Carbaryl 0.000 < 0.100 0.383 0.400 95.7 79.9 - 1 Carbofuran 0.000 < 0.100				
Carbofuran 0.000 < 0.100 0.402 0.400 100.5 81.6 - 2 Chlorantraniliprol 0.001 < 0.100				
Chlorantraniliprol 0.001				
Chlorfenapyr	2010			
Chlorpyrifos				
Cofentezine				
Cyfluthrin 0.000 < 1.000 1.741 2.000 87.0 69.8 - 1.00 Cypermethrin 0.000 < 1.000 2.119 2.000 165.9 80.1 - 1.00 Dazinoride 0.000 < 1.000 1.912 2.000 95.6 75.6 - 3.00 Diazinon 0.001 < 0.100 0.413 0.400 103.3 79.9 - 2.00 Dichlorvos 0.029 < 0.500 1.970 2.000 98.5 75.9 - 2.00 Dimethoat 0.000 < 0.100 0.388 0.400 99.5 79.6 - 3.00 Ethoprophos 0.000 < 0.100 0.360 0.400 99.1 72.4 - 3.00 Etofenprox 0.016 < 0.100 0.810 0.800 101.2 22.0 10.0 10.1 22.4 - 1.0 10.0 22.4 - 1.0 22.4 - 1.0 22.4 - 1.0 22.4 - 1.0 22.4 - 1.0 22.4 - 1.0 22.4				
Openmethrin 0.000 < 1.000 2.119 2.000 105.9 80.1 - 1.000 Daminozide 0.000 < 1.000				
Daminozide 0.000 < 1.000 1.912 2.000 95.6 75.0 - 1.000 Diazinon 0.001 < 0.100				
Diazlinon 0.001 < 0.100 0.413 0.400 103.3 79.9 - 1 Dichlorvos 0.029 < 0.500				
Dichlorvos 0.029 < 0.500 1.970 2.000 98.5 75.9 - 1.000 Dimethoat 0.000 < 0.100				
Dimethoat 0.000 < 0.100 0.398 0.400 99.5 79.6 - 12.4 Ethoprophos 0.000 < 0.100				
Ethoprophos 0.000 < 0.100 0.360 0.400 90.1 72.4 - 12.2 Etofenprox 0.016 < 0.100				
Etefenprox 0.016 < 0.100				
Etoxazol 0.000 < 0.100 0.403 0.400 100.9 77.4 - 1 Fenoxycarb 0.011 < 0.100				
Fenoxycarb 0.011 < 0.100 0.429 0.400 107.2 82.7 Fenpyroximat 0.000 < 0.100				
Fenpyroximat 0.000 < 0.100 0.815 0.800 101.8 82.4 - 1 Fipronii 0.023 < 0.100				
Fipronil 0.023 < 0.100 0.803 0.800 100.3 78.2 - 1 Flonicamid 0.009 < 0.400				
Flonicamid 0.009 < 0.400 0.984 1.000 98.4 78.8 - 1				
Fludioxonil 0.003 < 0.100 0.820 0.800 102.5 73.1 - 1 Hexythiazox 0.013 < 0.400				
Hexythiazox 0.013 < 0.400				
Imazali				
Imidacloprid 0.000 < 0.200 0.827 0.800 10.3.4 77.9 1.5				
Kresoxim-Methyl 0.000 < 0.100 0.783 0.800 97.9 75.5 - 1 Malathion 0.001 < 0.100				
Malathion 0.001 < 0.100 0.400 0.400 99.9 77.6 - 2 Metalaxyl 0.000 < 0.100				
Metalaxyl 0.000 < 0.100 0.409 0.400 102.2 75.6 - 1 Methlocarb 0.000 < 0.100				
Methiocarb 0.000 < 0.100 0.402 0.400 100.6 78.6 - 1 Methomyl 0.000 < 0.200				
Methomyl 0.000 < 0.200 0.831 0.800 103.8 73.0 - 1 MGK 264 0.000 < 0.100 0.419 0.400 104.7 79.6 - 3 Myclobutaril 0.000 < 0.100 0.412 0.400 102.9 83.2 - 1 Naled 0.000 < 0.200 0.991 1.000 99.1 73.0 - 3 Oxamyl 0.000 < 0.400 1.894 2.000 94.7 71.7 - 3 Paclobutzaol 0.000 < 0.200 0.829 0.800 103.6 81.8 - 1 Parathion Methyl 0.034 < 0.200 1.018 0.800 127.2 68.2 - 3				
MGK 264 0.000 < 0.100 0.419 0.400 104.7 79.6 2 Myclobutanil 0.000 < 0.100				
Myclobutanil 0.000 < 0.100 0.412 0.400 102.9 83.2 - 1 Naled 0.000 < 0.200				
Naled 0.000 < 0.200 0.991 1.000 99.1 73.0 - 1 Oxamyl 0.000 < 0.400	9			
Oxamyl 0.000 < 0.400 1.894 2.000 94.7 71.7 - 7 Paclobutrazol 0.000 < 0.200				
Paclobutrazol 0.000 < 0.200 0.829 0.800 103.6 81.8 - 1 Parathion Methyl 0.034 < 0.200	4			
Parathion Methyl 0.034 < 0.200 1.018 0.800 127.2 68.2 - 1	5			
Permethrin 0.014 < 0.100 0.403 0.400 100.9 78.8 - 1				
	В			
Piperonyl butoxide 0.000 < 1.000 2.076 2.000 103.8 83.1 - 1	1			
Prallethrin 0.035 < 0.200 0.374 0.400 93.4 70.2 - 1				
Propiconazole 0.000 < 0.200 0.818 0.800 102.2 80.9 - 1	6			
Propoxur 0.000 < 0.100 0.396 0.400 98.9 81.7 - 1	5			
	0			
Pyridaben 0.000 < 0.100 0.472 0.400 117.9 80.0 - 1				
Spinosad 0.000 < 0.100 0.415 0.388 106.9 83.1 - 1	5			
Spiromesifen 0.002 < 0.100 0.430 0.400 107.6 68.7 - 1				
	В			
	9			
	9			
Thiacloprid 0.000 < 0.100 0.408 0.400 101.9 79.1 - 1				
Thiamethoxam 0.000 < 0.100 0.397 0.400 99.2 72.1 - 1	7.10			
Trifloxystrobin 0.000 < 0.100 0.414 0.400 103.5 79.9 - 1				

Report Number: 21-000929/D04.R01

02/02/2021 Report Date: ORELAP#: OR100028

Purchase Order:

01/26/21 16:05 Received:

Explanation of QC Flag Comments:

Code	Explanation
Q	Matrix interferences affecting spike or surrogate recoveries.
Q1	Quality control result biased high. Only non-detect samples reported.
Q2	Quality control outside QC limits. Data considered estimate.
Q3	Sample concentration greater than four times the amount spiked.
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.
Q5	Spike results above calibration curve.
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.
R	Relative percent difference (RPD) outside control limit.
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.
LOQ1	Quantitation level raised due to low sample volume and/or dilution.
LOQ2	Quantitaion level raised due to matrix interference.
В	Analyte detected in method blank, but not in associated samples.
B1	The sample concentration is greater than 5 times the blank concentration.
B2	The sample concentration is less than 5 times the blank concentration.